8.已知全集U=R,若集合A={y|y=3-2-x},B={x|$\frac{x-2}{x}$≤0},則A∩∁UB=( 。
A.(-∞,0)∪[2,3)B.(-∞,0]∪(2,3)C.[0,2)D.[0,3)

分析 由指數(shù)函數(shù)的值域求出集合A,由分式不等式的解法求出集合B,由補集的運算求出∁UB,由交集的運算求出A∩∁UB.

解答 解:由2-x>0得y=3-2-x<3,則A={y|y=3-2-x}=(-∞,3),
由$\frac{x-2}{x}≤0$得$\left\{\begin{array}{l}{x(x-2)≤0}\\{x≠0}\end{array}\right.$,解得0<x≤2,則B=(0,2],
又U=R,則∁UB=(-∞,0]∪(2,+∞),
所以A∩∁UB=(-∞,0]∪(2,3),
故選:B.

點評 本題考查了交、并、補集的混合運算,指數(shù)函數(shù)的值域,以及分式不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$f(x)=\left\{\begin{array}{l}1-{2^x},x≤0\\{log_2}x,x>0\end{array}\right.$,則f(f(-1))=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知等比數(shù)列{an}中,公比$q=\frac{1}{2},{a_3}{a_5}{a_7}=64$,則a4=( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在極坐標系中,點(1,0)與點(2,π)的距離為( 。
A.1B.3C.$\sqrt{1+{π^2}}$D.$\sqrt{9+{π^2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若不等式|ax+1|>2在(1,+∞)上恒成立,則實數(shù)a的取值范圍為[1,+∞)∪(-∞,-3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}滿足a1=$\frac{1}{3}$,且an+1=an(an+1)(n∈N*),則m=$\frac{1}{{a}_{1}+1}$+$\frac{1}{{a}_{2}+1}$+…+$\frac{1}{{a}_{2017}+1}$的整數(shù)部分是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在多面體ABCDEFG中,四邊形ABCD與CDEF是邊長均為a正方形,CF⊥平面ABCD,BG⊥平面ABCD,且AB=2BG=4BH
(1)求證:平面AGH⊥平面EFG
(2)若a=4,求三棱錐G-ADE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.曲線y=-$\frac{1}{x}$在(1,-1)處的切線的斜率為( 。
A.-1B.1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)f(x)=log2(x+1)+a的反函數(shù)的圖象經(jīng)過點(4,1),則實數(shù)a=3.

查看答案和解析>>

同步練習(xí)冊答案