【題目】已知拋物線(xiàn)x2=2py(p>0)的焦點(diǎn)為F,直線(xiàn)x=4與x軸的交點(diǎn)為P,與拋物線(xiàn)的交點(diǎn)為Q,且

(1)求拋物線(xiàn)的方程;
(2)如圖所示,過(guò)F的直線(xiàn)l與拋物線(xiàn)相交于A,D兩點(diǎn),與圓x2+(y﹣1)2=1相交于B,C兩點(diǎn)(A,B兩點(diǎn)相鄰),過(guò)A,D兩點(diǎn)分別作我校的切線(xiàn),兩條切線(xiàn)相交于點(diǎn)M,求△ABM與△CDM的面積之積的最小值.

【答案】
(1)

解:由題意可知P(4,0),Q(4, ),丨QF丨= + ,

,則 + = × ,解得:p=2,

∴拋物線(xiàn)x2=4y


(2)

解:設(shè)l:y=kx+1,A(x1,y1),B(x2,y2),

聯(lián)立 ,整理得:x2﹣4kx﹣4=0,

則x1x2=﹣4,

由y= x2,求導(dǎo)y′= ,

直線(xiàn)MA:y﹣ = (x﹣x1),即y= x﹣ ,

同理求得MD:y= x﹣

,解得: ,則M(2k,﹣1),

∴M到l的距離d= =2 ,

∴△ABM與△CDM的面積之積S△ABMS△CDM= 丨AB丨丨CD丨d2

= (丨AF丨﹣1)(丨DF丨﹣1)d2,

= y1y2d2= ×d2

=1+k2≥1,

當(dāng)且僅當(dāng)k=0時(shí)取等號(hào),

當(dāng)k=0時(shí),△ABM與△CDM的面積之積的最小值1


【解析】(1)求得P和Q點(diǎn)坐標(biāo),求得丨QF丨,由題意可知, + = × 即可求得p的值,求得橢圓方程;(2)設(shè)直線(xiàn)方程,代入拋物線(xiàn)方程,由韋達(dá)定理x1x2=﹣4,求導(dǎo),根據(jù)導(dǎo)數(shù)的幾何意義,求得切線(xiàn)方程,聯(lián)立求得M點(diǎn)坐標(biāo),根據(jù)點(diǎn)到直線(xiàn)距離公式,求得M到l的距離,利用三角形的面積公式,即可求得△ABM與△CDM的面積之積的最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=|3x﹣2|+|x﹣2|.
(Ⅰ)解不等式f(x)≤8;
(Ⅱ)對(duì)任意的非零實(shí)數(shù)x,有f(x)≥(m2﹣m+2)|x|恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了打好脫貧攻堅(jiān)戰(zhàn),某貧困縣農(nóng)科院針對(duì)玉米種植情況進(jìn)行調(diào)研,力爭(zhēng)有效地改良玉米品種,為農(nóng)民提供技術(shù)支援.現(xiàn)對(duì)已選出的一組玉米的莖高進(jìn)行統(tǒng)計(jì),獲得莖葉圖如圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.
(1)完成2×2列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(K2= ,其中n=a+b+c+d)
(2)為了改良玉米品種,現(xiàn)采用分層抽樣的方法從抗倒伏的玉米中抽出5株,再?gòu)倪@5株玉米中選取2株進(jìn)行雜交試驗(yàn),選取的植株均為矮莖的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們國(guó)家正處于老齡化社會(huì)中,老有所依也是政府的民生工程.某市共有戶(hù)籍人口400萬(wàn),其中老人(年齡60歲及以上)人數(shù)約有66萬(wàn),為了解老人們的健康狀況,政府從 老人中隨機(jī)抽取600人并委托醫(yī)療機(jī)構(gòu)免費(fèi)為他們進(jìn)行健康評(píng)估,健康狀況共分為不能 自理、不健康尚能自理、基本健康、健康四個(gè)等級(jí),并以80歲為界限分成兩個(gè)群體進(jìn)行 統(tǒng)計(jì),樣本分布被制作成如圖表:

(1)若采取分層抽樣的方法再?gòu)臉颖局械牟荒茏岳淼睦先酥谐槿?6人進(jìn)一步了解他們的生活狀況,則兩個(gè)群體中各應(yīng)抽取多少人?
(2)估算該市80歲及以上長(zhǎng)者占全市戶(hù)籍人口的百分比;
(3)據(jù)統(tǒng)計(jì)該市大約有五分之一的戶(hù)籍老人無(wú)固定收入,政府計(jì)劃為這部分老人每月發(fā) 放生活補(bǔ)貼,標(biāo)準(zhǔn)如下:①80歲及以上長(zhǎng)者每人每月發(fā)放生活補(bǔ)貼200元;②80歲以下 老人每人每月發(fā)放生活補(bǔ)貼120元;③不能自理的老人每人每月額外發(fā)放生活補(bǔ)貼100 元.試估計(jì)政府執(zhí)行此計(jì)劃的年度預(yù)算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 內(nèi)有一點(diǎn)M(2,1),過(guò)M的兩條直線(xiàn)l1 , l2分別與橢圓E交于A,C和B,D兩點(diǎn),且滿(mǎn)足 (其中λ>0,且λ≠1),若λ變化時(shí),AB的斜率總為 ,則橢圓E的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中心在原點(diǎn)的橢圓C1與雙曲線(xiàn)C2具有相同的焦點(diǎn),F(xiàn)1(﹣c,0),F(xiàn)2(c,0),P為C1與C2在第一象限的交點(diǎn),|PF1|=|F1F2|且|PF2|=5,若橢圓C1的離心率 ,則雙曲線(xiàn)的離心率e2的范圍是(
A.
B.
C.(2,3)
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的右焦點(diǎn)為F,過(guò)橢圓C中心的弦PQ長(zhǎng)為2,且∠PFQ=90°,△PQF的面積為1.
(1)求橢圓C的方程;
(2)設(shè)A1、A2分別為橢圓C的左、右頂點(diǎn),S為直線(xiàn) 上一動(dòng)點(diǎn),直線(xiàn)A1S交橢圓C于點(diǎn)M,直線(xiàn)A2S交橢圓于點(diǎn)N,設(shè)S1、S2分別為△A1SA2、△MSN的面積,
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)直線(xiàn)y=kx+1與圓x2+y2+2x﹣my=0相交于A,B兩點(diǎn),若點(diǎn)A,B關(guān)于直線(xiàn)l:x+y=0對(duì)稱(chēng),則|AB|=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代一部重要的數(shù)學(xué)著作,書(shū)中有如下問(wèn)題:“今有良馬與駑馬發(fā)長(zhǎng)安,至齊.齊去長(zhǎng)安三千里,良馬初日行一百九十三里,日增一十三里,駕馬初日行九十七里,日減半里.良馬先至齊,復(fù)還迎駑馬.何日相逢,”其大意為:“現(xiàn)在有良馬和駑馬同時(shí)從長(zhǎng)安出發(fā)到齊去,已知長(zhǎng)安和齊的距離是3000里,良馬第一天行193里,之后每天比前一天多行13里,駑馬第一天行97里,之后每天比前一天少行0.5里.良馬到齊后,立刻返回去迎駑馬,多少天后兩馬相遇.”現(xiàn)有三種說(shuō)法:①駑馬第九日走了93里路;②良馬四日共走了930里路;③行駛5天后,良馬和駑馬相距615里. 那么,這3個(gè)說(shuō)法里正確的個(gè)數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案