如圖,在圓的內(nèi)接四邊形ABCD中,∠ABC=90°,∠ABD=30°,∠BDC=45°,AD=1,則BC=
 
考點:與圓有關的比例線段
專題:直線與圓
分析:連結AC,由∠ABC=90°,得到AC是圓的直徑,由此利用已知條件能求出BC.
解答: 解:連結AC,
∵∠ABC=90°,∴AC是圓的直徑,
∴∠ADC=90°,
∵∠ACD=∠ABD=30°,AD=1,
∴AC=2AD=2,
∵∠BAC=∠BDC=45°,
∴BC=AB,
∴BC2+AB2=2BC2=AC2=4,
解得BC=
2

故答案為:
2
點評:本題考查線段長的求法,是中檔題,解題時要認真審題,注意圓的簡單性質的靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓E的中心為O,長軸的兩個端點為A,B,右焦點為F,且
AF
=7
FB
,橢圓E的右準線l的方程為x=
16
3

(Ⅰ)求橢圓E的標準方程;
(Ⅱ)若N為準線l上一點(在x軸上方),AN與橢圓交于點M,且
AN
MF
=0
,
AM
MN
,求λ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:x=my+1過橢圓C:
x2
a2
+
y2
b2
=1 
(a>b>0)的右焦點F,拋物線:x2=4
2
y的焦點為橢圓C的上頂點,且直線l交橢圓C于A、B兩點,點A、F、B在直線g:x=3上的射影依次為點D、K、E.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l交y軸于點M,且
MA
1
AF
,
MB
2
BF
.證明:λ12的值定值;
(Ⅲ)連接AE、BD,直線AE與BD是否相交于定點?若是,請求出定點的坐標,并給予證明;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,AB是圓O的弦,CD是AB的垂直平分線,切線AE與DC的延長線相交于E.若AB=24,AE=20,則圓O的半徑R=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)=ex定義域中的任意的x1,x2(x1≠x2),有如下結論:
(1)f(x1x2)=f(x1)+f(x2);    
(2)f(x1+x2)=f(x1)f(x2);
(3)
f(x1)-f(x2)
x1-x2
<0;       
 (4)
f(x1)-f(x2)
x1-x2
>0

(5)f(
x1+x2
2
)<
f(x1)+f(x2)
2

上述結論中正確的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(x,8),
b
=(4,y),
c
=(x,y)(x>0,y>0),若
a
b
,則|
c
|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若一個命題的逆命題、否命題、逆否命題中有且只有一個是真命題,我們就把這個命題叫做“正向真命題”,給出下列命題:
①函數(shù)y=x2(x∈R)為偶函數(shù);   
②若
a
c
=
b
c
,則
a
=
b

③若四點不共面,則這四點中任何三點都不共線;
其中是“正向真命題”的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x
x+1
的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某流程圖如圖所示,現(xiàn)輸入如下四個函數(shù),則可以輸出的函數(shù)是( 。
A、f(x)=x2-1
B、f(x)=
1
x
C、f(x)=
ex-e-x
ex+e-x
D、f(x)=3sinx+1

查看答案和解析>>

同步練習冊答案