【題目】過拋物線的焦點且斜率為1的直線與拋物線交于、兩點,且.
(1)求拋物線的方程;
(2)點是拋物線上異于、的任意一點,直線、與拋物線的準(zhǔn)線分別交于點、,求證:為定值.
【答案】(1);(2)證明見解析
【解析】
(1)根據(jù)題意,設(shè)直線,與拋物線方程聯(lián)立,再利用拋物線定義,由求解.
(2)設(shè),得到直線,令,得到,再根據(jù)點均在拋物線上 ,將,,代入化簡得到,同理可得點的縱坐標(biāo)為,然后由數(shù)量積坐標(biāo)運算求解.
(1)由題意知,則直線,
代入拋物線,化簡得,
設(shè),則,
因拋物線的準(zhǔn)線方程為,
由拋物線的定義得,
,
故拋物線的方程為.
(2)設(shè),則直線,
當(dāng)時,,
∵點均在拋物線上
∴,
∴,
即點的縱坐標(biāo)為,
同理可得點的縱坐標(biāo)為,
∴,
由(1)知,
∴
∴,為定值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司培訓(xùn)員工某項技能,培訓(xùn)有如下兩種方式:
方式一:周一到周五每天培訓(xùn)1小時,周日測試
方式二:周六一天培訓(xùn)4小時,周日測試
公司有多個班組,每個班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測試達(dá)標(biāo)的人數(shù)如表:
第一周 | 第二周 | 第三周 | 第四周 | |
甲組 | 20 | 25 | 10 | 5 |
乙組 | 8 | 16 | 20 | 16 |
用方式一與方式二進(jìn)行培訓(xùn),分別估計員工受訓(xùn)的平均時間精確到,并據(jù)此判斷哪種培訓(xùn)方式效率更高?
在甲乙兩組中,從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求這2人中至少有1人來自甲組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,直線與函數(shù)的圖象在處相切,設(shè),若在區(qū)間[1,2]上,不等式恒成立.則實數(shù)m( )
A. 有最大值 B. 有最大值e C. 有最小值e D. 有最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.
(Ⅰ)求與的直角坐標(biāo)方程;
(Ⅱ)若與的交于點,與交于、兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值.
(2)是否存在實數(shù),使得函數(shù)在上的最小值為0?若存在,試求出的值:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)若函數(shù)在上是單調(diào)函數(shù),求實數(shù)的取值范圍;
(2)當(dāng)時,是否存在,使得和的圖象在處的切線互相平行,若存在,請給予證明,若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A.已知冪函數(shù)在上單調(diào)遞減則或
B.函數(shù)的有兩個零點,一個大于0,一個小于0的一個充分不必要條件是.
C.已知函數(shù),若,則的取值范圍為
D.已知函數(shù)滿足,,且與的圖像的交點為則的值為8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com