【題目】如圖,直二面角中,四邊形ABCD是邊長(zhǎng)為2的正方形,,F為CE上的點(diǎn),且平面ACE.
Ⅰ求證:平面BCE;
Ⅱ求二面角的余弦值;
Ⅲ求點(diǎn)D到平面ACE的距離.
【答案】(I)詳見(jiàn)解析;(II);(III).
【解析】
要證明平面BCE,需要在平面BCE內(nèi)找兩條相交直線都垂直于,而易證; 求二面角的余弦值,需要先作角,連接BD交AC交于G,連接FG,可證得是二面的平面角,在中求解即可; 求點(diǎn)D到平面ACE的距離,可以轉(zhuǎn)化為求三棱錐的高用等體積法求出即可。
解:平面
二面角為直二面角且.
平面
平面
連接BD交AC交于G,連接FG
正方形ABCD邊長(zhǎng)為,
平面由三垂線定理的逆定理得.
是二面的平面角
平面BCE,
又,在等腰直角三角形AEB中,
又中,
中
二面角的正弦值等于
過(guò)點(diǎn)E作交AB于點(diǎn)O,
二面角為直二面角,平面ABCD
設(shè)D到平面ACE的距離為h,由,可得
點(diǎn)D到平面ACE的距離為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線 ,若圓上恰好存在兩個(gè)點(diǎn) ,,他們到直線 的距離為 ,則稱該圓為“完美型”圓.則下列圓中是“完美型”圓的是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)f(x)給出定義:
設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0 , 則稱點(diǎn)(x0 , f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.
某同學(xué)經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心.給定函數(shù) ,請(qǐng)你根據(jù)上面探究結(jié)果,計(jì)算
= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線C的方程為y=ax2(a<0),過(guò)拋物線C上一點(diǎn)P(x0 , y0)(x0≠0)作斜率為k1 , k2的兩條直線分別交拋物線C于A(x1 , y1)B(x2 , y2)兩點(diǎn)(P,A,B三點(diǎn)互不相同),且滿足k2+λk1=0(λ≠0且λ≠﹣1).
(Ⅰ)求拋物線C的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)設(shè)直線AB上一點(diǎn)M,滿足 =λ ,證明線段PM的中點(diǎn)在y軸上;
(Ⅲ)當(dāng)λ=1時(shí),若點(diǎn)P的坐標(biāo)為(1,﹣1),求∠PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)y1的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊長(zhǎng)為2,∠BAD=60°,M為DC的中點(diǎn),若N為菱形內(nèi)任意一點(diǎn)(含邊界),則 的最大值為( )
A.3
B.2
C.6
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,cos2C+2 cosC+2=0.
(1)求角C的大。
(2)若b= a,△ABC的面積為 sinAsinB,求sinA及c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,右焦點(diǎn)為,點(diǎn)分別是該橢圓的上、下頂點(diǎn),點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn)(與軸交點(diǎn)除外),直線交橢圓于另一點(diǎn),記直線, 的斜率分別為
(1)當(dāng)直線過(guò)點(diǎn)時(shí),求的值;
(2)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與拋物線相切于點(diǎn).
(1)求實(shí)數(shù)的值;
(2)求以點(diǎn)為圓心,且與拋物線的準(zhǔn)線相切的圓的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com