分析 (1)把已知由同角三角函數(shù)的基本關(guān)系式化簡,代入f(A)=$\sqrt{3}$+1,結(jié)合A的范圍求解A的值;
(2)分別在三角形ABC、三角形ADB、三角形ADC中運(yùn)用余弦定理結(jié)合已知條件求得AB•AC的值,代入三角形的面積公式得答案.
解答 解:f(θ)=2sin($\frac{π}{4}$+θ)[$\sqrt{3}$sin($\frac{π}{4}$+θ)+cos($\frac{π}{4}$+θ)]
=2$\sqrt{3}$sin2($\frac{π}{4}$+θ)+2sin($\frac{π}{4}$+θ)cos($\frac{π}{4}$+θ)
=$\sqrt{3}$[1-cos($\frac{π}{2}$+2θ)]+sin($\frac{π}{2}$+2θ)
=$\sqrt{3}$+$\sqrt{3}$sin2θ+cos2θ
=$\sqrt{3}$+2sin(2θ+$\frac{π}{6}$).
(1)由f(A)=$\sqrt{3}$+1,A∈(0,π),得$\sqrt{3}$+2sin(2A+$\frac{π}{6}$)=$\sqrt{3}$+1,
可得:sin(2A+$\frac{π}{6}$)=$\frac{1}{2}$,
∵A∈(0,π),∴A=$\frac{π}{3}$;
(2)如圖,
在△ABC中,設(shè)BC中點(diǎn)為D,∠ADB=α,則∠ADC=π-α,
則BC2=AC2+AB2-2AB•ACcos$\frac{π}{3}$,
AB2=AD2+BD2-2AD•BDcosα,
AC2=AD2+DC2-2AD•DCcos(π-α),
又AD=3,BD=DC=$\frac{3}{2}$,
聯(lián)立以上各式求得:AB•AC=$\frac{27}{2}$.
∴S△ABC=$\frac{1}{2}$AB•ACsin$\frac{π}{3}$=$\frac{1}{2}$×$\frac{27}{2}$×$\frac{\sqrt{3}}{2}$=$\frac{27\sqrt{3}}{8}$.
點(diǎn)評 本題考查了同角三角函數(shù)的基本關(guān)系式,考查了余弦定理在解三角形中的應(yīng)用,考查了學(xué)生的計(jì)算能力,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 160 | B. | 180 | C. | 200 | D. | 220 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | -$\frac{3}{4}$ | C. | ±$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
ξ | 1 | 2 | 3 |
p | $\frac{1}{2}$ | t | $\frac{1}{3}$ |
A. | $\frac{11}{6}$ | B. | $\frac{15}{2}$ | C. | $\frac{11}{2}$ | D. | $\frac{33}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com