6.已知遞增的等比數(shù)列{an}的前n項(xiàng)和為Sn,a6=64,a4、a5的等差中項(xiàng)為3a3
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{n}{{a}_{2n-1}}$,求數(shù)列bn的前n項(xiàng)和Tn

分析 (1)根據(jù)已知條件列出方程組,求出a1,q,代入通項(xiàng)公式即可;
(2)根據(jù){bn}的通項(xiàng)公式特點(diǎn)可知使用錯位相減法求和.

解答 解:(1)設(shè)等比數(shù)列{an}的公比為q,
∵a6=64,a4、a5的等差中項(xiàng)為3a3
∴$\left\{\begin{array}{l}{{a}_{1}{q}^{5}=64}\\{{a}_{1}{q}^{3}+{a}_{1}{q}^{4}=6{a}_{1}{q}^{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=-\frac{64}{243}}\\{q=-3}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{1}=2}\\{q=2}\end{array}\right.$.
∵{an}是遞增數(shù)列,∴a1=2,q=2.
∴an=a1qn-1=2n
(2)bn=$\frac{n}{{a}_{2n-1}}$=$\frac{n}{{2}^{2n-1}}$.
∴Tn=$\frac{1}{2}$+$\frac{2}{{2}^{3}}$+$\frac{3}{{2}^{5}}$+$\frac{4}{{2}^{7}}$+…+$\frac{n-1}{{2}^{2n-3}}$+$\frac{n}{{2}^{2n-1}}$.
∴$\frac{1}{4}{T}_{n}$=$\frac{1}{{2}^{3}}$+$\frac{2}{{2}^{5}}$+$\frac{3}{{2}^{7}}$+$\frac{4}{{2}^{11}}$+…+$\frac{n-1}{{2}^{2n-1}}$+$\frac{n}{{2}^{2n+1}}$.
∴$\frac{3}{4}{T}_{n}$=$\frac{1}{2}$+$\frac{1}{{2}^{3}}$+$\frac{1}{{2}^{5}}$+$\frac{1}{{2}^{7}}$+…+$\frac{1}{{2}^{2n-1}}$-$\frac{n}{{2}^{2n+1}}$
=$\frac{\frac{1}{2}(1-(\frac{1}{4})^{n})}{1-(\frac{1}{4})^{\;}}$-$\frac{n}{{2}^{2n+1}}$=$\frac{2}{3}$(1-$\frac{1}{{2}^{2n}}$)-$\frac{n}{{2}^{2n+1}}$
=$\frac{2}{3}$-$\frac{1}{3}$•$\frac{1}{{2}^{2n-1}}$-$\frac{n}{{2}^{2n+1}}$.
∴Tn=$\frac{8}{9}$-$\frac{1}{9}$•$\frac{1}{{2}^{2n-3}}$-$\frac{n}{3•{2}^{2n-1}}$.

點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式及數(shù)列求和,弄清數(shù)列類型找到與之對應(yīng)的求和方法是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知四棱錐P-ABCD的底面ABCD為平行四邊形,M為線段PC上的點(diǎn),且滿足CM=$\frac{1}{2}$MP.若$\overrightarrow{CM}$=-$\frac{1}{3}$$\overrightarrow{AB}$+m$\overrightarrow{AD}$+n$\overrightarrow{AP}$,則m+n=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知角α的終邊經(jīng)過點(diǎn)M(π,-$\sqrt{2}$),則sin2α+cos2α=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.光線從A(-3,4)點(diǎn)射出,到x軸上的B點(diǎn)后,被x軸反射,這時反射光線恰好過點(diǎn)C(1,6),則BC所在直線的方程為( 。
A.5x-2y+7=0B.2x-5y+7=0C.5x+2y-7=0D.2x+5y-7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}中,a1=6,且當(dāng)n≥2時,$\frac{1}{3}$an=an-1+$\frac{1}{n}$an-1
(1)求證:數(shù)列{$\frac{{a}_{n}}{n+1}$}是等比數(shù)列;
(2)若對任意n∈N*,不等式3n2-2n-5<(2-λ)an恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=2x2-4ax+2b2,若a∈{4,6,8},b∈{3,5,7},則該函數(shù)有兩個零點(diǎn)的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.求經(jīng)過兩直線2x+y-8=0與x-2y+1=0的交點(diǎn),且在y軸上的截距為在x軸上截距的兩倍的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,若|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,則∠BAC=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北冀州市高二文上月考三數(shù)學(xué)試卷(解析版) 題型:選擇題

等差數(shù)列中,,,則( )

A.15 B.30

C.31 D.64

查看答案和解析>>

同步練習(xí)冊答案