【題目】已知四面體ABCD的頂點都在同一個球的球面上,BC= ,BD=4,且滿足BC⊥BD,AC⊥BC,AD⊥BD.若該三棱錐的體積為 ,則該球的球面面積為 .
【答案】23π
【解析】解:由題意,如圖:BC⊥BD,AC⊥BC,AD⊥BD.作CE∥BD,ED∥BC,可得CBDE是矩形,可得AE⊥平面BCDE, BC= ,BD=4,該三棱錐的體積為 ,
可得 = ,可得AE=2,并且AB為球的直徑,BE= = ,
AB= = ,
∴球的表面積4π× =23π,
所以答案是:23π.
【考點精析】利用直線與平面垂直的判定對題目進(jìn)行判斷即可得到答案,需要熟知一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果對一切實數(shù)x、y,不等式 ﹣cos2x≥asinx﹣ 恒成立,則實數(shù)a的取值范圍是( )
A.(﹣∞, ]
B.[3,+∞)
C.[﹣2 ,2 ]
D.[﹣3,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量 =(1,﹣2), =(a,﹣1), =(﹣b,0),其中O為坐標(biāo)原點,a>0,b>0,若A、B、C三點共線,則 的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了制定合理的節(jié)電方案,供電局對居民用電進(jìn)行了調(diào)查,通過抽樣,獲得了某年200戶居民每戶的月均用電量(單位:度),將數(shù)據(jù)按照[0,100),[100,200),[200,300),[300,400),[400,500),[500,600),[600,700),[700,800),[800,900]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中m的值并估計居民月均用電量的中位數(shù);
(Ⅱ)從樣本里月均用電量不低于700度的用戶中隨機抽取4戶,用X表示月均用電量不低于800度的用戶數(shù),求隨機變量X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,已知O為坐標(biāo)原點,點A、B的坐標(biāo)分別為(1,1)、(﹣3,3).若動點P滿足 ,其中λ、μ∈R,且λ+μ=1,則點P的軌跡方程為( )
A.x﹣y=0
B.x+y=0
C.x+2y﹣3=0
D.(x+1)2+(y﹣2)2=5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為 .
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)點為P(x,y)為直線l與圓C所截得的弦上的動點,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等比數(shù)列,an>0,a3=12,且a2 , a4 , a2+36成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè){bn}是等差數(shù)列,且b3=a3 , b9=a5 , 求b3+b5+b7+…+b2n+1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十七世紀(jì)英國著名數(shù)學(xué)家、物理學(xué)家牛頓創(chuàng)立的求方程近似解的牛頓迭代法,相較于二分法更具優(yōu)勢,如圖給出的是利用牛頓迭代法求方程x2=6的正的近似解的程序框圖,若輸入a=2,=0.02,則輸出的結(jié)果為( )
A.3
B.2.5
C.2.45
D.2.4495
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點,M(x1 , y1),N(x2 , y2)是橢圓 + =1上的點,且x1x2+2y1y2=0,設(shè)動點P滿足 = +2
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)若直線l:y=x+m(m≠0)與曲線C交于A,B兩點,求三角形OAB面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com