【題目】如圖,一塊黃銅板上插著三根寶石針,在其中一根針上從下到上穿好由大到小的若干金片.若按照下面的法則移動(dòng)這些金片:每次只能移動(dòng)一片金片;每次移動(dòng)的金片必須套在某根針上;大片不能疊在小片上面.設(shè)移完n片金片總共需要的次數(shù)為an,可推得a1=1,an+1=2an+1.如圖是求移動(dòng)次數(shù)在1000次以上的最小片數(shù)的程序框圖模型,則輸出的結(jié)果是( 。

A. 8B. 9C. 10D. 11

【答案】C

【解析】

執(zhí)行如圖所示的程序框圖,直到滿(mǎn)足條件結(jié)束循環(huán),即可得到輸出的結(jié)果.

由程序框圖知,i1時(shí),S=1

i2時(shí),S1×2+13;

i3時(shí),S3×2+17;

i4時(shí),S7×2+115;

i5時(shí),S15×2+131

i6時(shí),S31×2+163;

i7時(shí),S63×2+1127

i8時(shí),S127×2+1255

i9時(shí),S255×2+1511

i10時(shí),S511×2+11023;

程序運(yùn)行結(jié)束,輸出的結(jié)果是i10

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓軸相切于點(diǎn),與軸正半軸交于兩點(diǎn)的上方),且.

1)求圓的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)作任一條直線(xiàn)與圓相交于,兩點(diǎn).

①求證:為定值,并求出這個(gè)定值;

②求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直棱柱中,,分別是棱,上的點(diǎn),且平面

1)證明:

2)若中點(diǎn),求直線(xiàn)與直線(xiàn)所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,,,,,PA=PD=CD=BC=1.

(1)求證:平面平面;

(2)求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若,求的單調(diào)區(qū)間;

(2)若函數(shù)存在唯一的零點(diǎn),且,則的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】手機(jī)廠商推出一款6寸大屏手機(jī),現(xiàn)對(duì)500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行評(píng)分,評(píng)分的頻數(shù)分布表如下:

女性用戶(hù)

分值區(qū)間

[50,60

[6070

[70,80

[80,90

[90100]

頻數(shù)

20

40

80

50

10

男性用戶(hù)

分值區(qū)間

[50,60

[60,70

[70,80

[80,90

[90100]

頻數(shù)

45

75

90

60

30

(1)完成下列頻率分布直方圖,并比較女性用戶(hù)和男性用戶(hù)評(píng)分的波動(dòng)大。ú挥(jì)算具體值,給出結(jié)論即可);

(2)把評(píng)分不低于70分的用戶(hù)稱(chēng)為評(píng)分良好用戶(hù),能否有的把握認(rèn)為評(píng)分良好用戶(hù)與性別有關(guān)?

參考附表:

參考公式,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知首項(xiàng)為的等比數(shù)列不是遞減數(shù)列,其前n項(xiàng)和為,且成等差數(shù)列。

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),求數(shù)列的最大項(xiàng)的值與最小項(xiàng)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若對(duì)任意,恒成立,求的值;

(2)設(shè),若沒(méi)有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠的機(jī)器上存在一種易損元件,這種元件發(fā)生損壞時(shí),需要及時(shí)維修. 現(xiàn)有甲、乙兩名工人同時(shí)從事這項(xiàng)工作,下表記錄了某月1日到10日甲、乙兩名工人分別維修這種元件的件數(shù).

日期

1

2

3

4

5

6

7

8

9

10

甲維修的元件數(shù)

3

5

4

6

4

6

3

7

8

4

乙維修的元件數(shù)

4

7

4

5

5

4

5

5

4

7

1)從這天中,隨機(jī)選取一天,求甲維修的元件數(shù)不少于5件的概率;

2)試比較這10天中甲維修的元件數(shù)的方差與乙維修的元件數(shù)的方差的大小.(只需寫(xiě)出結(jié)論);

3)由于甲、乙的任務(wù)量大,擬增加工人,為使增加工人后平均每人每天維修的元件不超過(guò)3件,請(qǐng)利用上表數(shù)據(jù)估計(jì)最少需要增加幾名工人.

查看答案和解析>>

同步練習(xí)冊(cè)答案