在數(shù)列{an}中,已知a1=1,an+2=
1
an+1
,a100=a96,則a9+a10=
 
考點(diǎn):數(shù)列遞推式
專題:綜合題,點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:利用a1=1,an+2=
1
an+1
,a100=a96,分別求出a9、a10,則可求a9+a10
解答: 解:∵a1=1,an+2=
1
an+1
,
∴a3=
1
2
,a5=
1
1
2
+1
=
2
3
,a7=
1
2
3
+1
=
3
5
,a9=
1
3
5
+1
=
5
8

∵an+2=
1
an+1
,a100=a96
∴a100=a96=
1
a98+1
=
1
1
a96+1
+1
,
∴a962+a96-1=0,
∴a96=
-1±
5
2

∴a94=
-1±
5
2
,
∴a10=
-1±
5
2
,
∴a9+a10=
5
8
+
-1±
5
2
=
1±4
5
8

故答案為:
1±4
5
8
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查學(xué)生分析解決問(wèn)題的能力,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)的一種商品每件進(jìn)價(jià)為10元,據(jù)調(diào)查知每日銷售量m(件)與銷售價(jià)x(元)之間的函數(shù)關(guān)系為m=70-x,10≤x≤70.設(shè)該商場(chǎng)日銷售這種商品的利潤(rùn)為y(元).(單件利潤(rùn)=銷售單價(jià)-進(jìn)價(jià);日銷售利潤(rùn)=單件利潤(rùn)×日銷售量)
(1)求函數(shù)y=f(x)的解析式;
(2)求該商場(chǎng)銷售這種商品的日銷售利潤(rùn)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=x2+ax+b有兩個(gè)零點(diǎn)m,n,證明:若|a|+|b|<1,則|m|<1,|n|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P是⊙O:x2+y2=1上一動(dòng)點(diǎn),線段AB是⊙C:(x-3)2+(y-4)2=1的一條動(dòng)直徑(A,B是直徑的兩端點(diǎn)),則
PA
PB
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:?x∈R,ex<0,則?p是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=ex-2x+2a,x∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當(dāng)a>ln2-1且x>0時(shí),ex>x2-2ax+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2x+a,其中a>0,若存在實(shí)數(shù)t,使f(t)<0,則f(t+2)•f(
2t+1
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四面體ABCD中,G為△ABC的重心,
BE
=2
ED
,以{
AB
,
AC
,
AD
}
為基底,則
GE
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀下面的程序框圖,輸出的結(jié)果是( 。
A、9B、10C、11D、12

查看答案和解析>>

同步練習(xí)冊(cè)答案