【題目】函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若,求證:.
【答案】(Ⅰ)a≤0時,的單調(diào)遞減區(qū)間是;時,的單調(diào)遞減區(qū)間是,的單調(diào)遞增區(qū)間是.(Ⅱ) 證明見解析.
【解析】試題分析:
(1)求出導數(shù),根據(jù)對的分類討論,找到導數(shù)正負區(qū)間,即可求出;
(2)求出函數(shù)的最小值,轉(zhuǎn)化為證≥,構造,求其最小值,即可解決問題.
試題解析:
(Ⅰ).
當a≤0時,,則在上單調(diào)遞減;當時,由解得,由解得.
即在上單調(diào)遞減;在上單調(diào)遞增;
綜上,a≤0時,的單調(diào)遞減區(qū)間是;時,的單調(diào)遞減區(qū)間是,的單調(diào)遞增區(qū)間是.
(Ⅱ) 由(Ⅰ)知在上單調(diào)遞減;在上單調(diào)遞增,
則.
要證≥,即證≥,即+≥0,
即證≥.構造函數(shù),則,
由解得,由解得,
即在上單調(diào)遞減;在上單調(diào)遞增;
∴ ,
即≥0成立.從而≥成立.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,我國南海某處的一個圓形海域上有四個小島,小島B與小島A、小島C相距都為5n mile,與小島D相距為 n mile.小島A對小島B與D的視角為鈍角,且 .
(Ⅰ)求小島A與小島D之間的距離和四個小島所形成的四邊形的面積;
(Ⅱ)記小島D對小島B與C的視角為α,小島B對小島C與D的視角為β,求sin(2α+β)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】4月23人是“世界讀書日”,某中學在此期間開展了一系列的讀書教育活動,為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時間不低于60分鐘的學生稱為“讀書謎”,低于60分鐘的學生稱為“非讀書謎”
附:K2= n=a+b+c+d
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
(1)求x的值并估計全校3000名學生中讀書謎大概有多少?(經(jīng)頻率視為頻率)
(2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認為“讀書謎”與性別有關?
非讀書迷 | 讀書迷 | 合計 | |
男 | 15 | ||
女 | 45 | ||
合計 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
以直角坐標系的原點為極點, 軸的正半軸為極軸建立極坐標系,已知點的直角坐標為,若直線的極坐標方程為曲線的參數(shù)方程是(為參數(shù)).
(1)求直線和曲線的普通方程;
(2)設直線和曲線交于兩點,求
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}中各項都大于1,前n項和為Sn , 且滿足an2+3an=6Sn﹣2.
(1)求數(shù)列{an}的通項公式;
(2)令bn= ,求數(shù)列{bn}的前n項和Tn;
(3)求使得Tn< 對所有n∈N*都成立的最小正整數(shù)m.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l過拋物線C的焦點,且與C的對稱軸垂直.l與C交于A,B兩點,|AB|=12,P為C的準線上一點,則△ABP的面積為( )
A.18
B.24
C.36
D.48
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點為極點O,軸正半軸為極軸,已知點P的直角坐標為(1,-5),點C的極坐標為,若直線l經(jīng)過點P,且傾斜角為,圓C的半徑為4.
(1).求直線l的參數(shù)方程及圓C的極坐標方程;
(2).試判斷直線l與圓C有位置關系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設a≥0,f(x)=x﹣1﹣ln2x+2alnx(x>0). (Ⅰ)令F(x)=xf′(x),討論F(x)在(0,+∞)內(nèi)的單調(diào)性并求極值;
(Ⅱ)求證:當x>1時,恒有x>ln2x﹣2alnx+1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com