分析 (1)已知等式第一項(xiàng)利用誘導(dǎo)公式化簡,第二項(xiàng)利用單項(xiàng)式乘多項(xiàng)式法則計(jì)算,整理后根據(jù)sinA不為0求出tanB的值,由B為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出B的度數(shù);
(2)由b+c=1,利用基本不等式的性質(zhì)化為bc≤$(\frac{b+c}{2})^{2}$=$\frac{1}{4}$,由余弦定理可得:a2=b2+c2-2bccosA=(b+c)2-2bc-bc=1-3bc,利用基本不等式的性質(zhì)即可得出.
解答 解:(1)cosC+(cosB-$\sqrt{3}$sinB)cosA=0,
∴-cos(A+B)+cosAcosB-$\sqrt{3}$sinBcosA=0,
∴sinAsinB-$\sqrt{3}$sinBcosA=0,
∵sinB≠0,
∴sinA-$\sqrt{3}$cosA=0,
∵cosA≠0,
∴tanA=$\sqrt{3}$,
∵A∈(0,π).
解得A=$\frac{π}{3}$.
(2)∵b+c=1,
∴bc≤$(\frac{b+c}{2})^{2}$=$\frac{1}{4}$,
由余弦定理可得:a2=b2+c2-2bccosA=(b+c)2-2bc-bc=1-3bc≥1-$\frac{3}{4}$=$\frac{1}{4}$,當(dāng)且僅當(dāng)b=c=$\frac{1}{2}$時(shí)取等號.
又a<b+c=1.
∴a的取值范圍是[$\frac{1}{2}$,1).
點(diǎn)評 本題考查了余弦定理、兩角和差的正弦公式、誘導(dǎo)公式、三角函數(shù)的內(nèi)角和定理、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2a=b | B. | a+b=2 | C. | 2a-b=3 | D. | a-2b=1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com