【題目】已知, .
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)記表示m,n中的最大值,若,且函數(shù)恰有三個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
【答案】(Ⅰ),當(dāng)時(shí),的單減區(qū)間為;當(dāng)時(shí),的單減區(qū)間為和,單增區(qū)間為.(Ⅱ)
【解析】
(Ⅰ)對(duì)求導(dǎo),得到,然后分和,分別要求的正負(fù),從而得到的單調(diào)區(qū)間;(Ⅱ)分和進(jìn)行討論,當(dāng)時(shí),可知證明至多有兩個(gè)零點(diǎn),不合題意,當(dāng)時(shí),先得出關(guān)于對(duì)稱,所以要有3個(gè)零點(diǎn),則必須在上取到2個(gè)零點(diǎn),得到關(guān)于的不等式組,解出的范圍,得到答案.
解:(Ⅰ)的定義域?yàn)?/span>R,
.
①當(dāng)時(shí),,所以的單減區(qū)間為;
②當(dāng)時(shí),令,得,
令,得,
綜上得,當(dāng)時(shí),的單減區(qū)間為;
當(dāng)時(shí),的單減區(qū)間為和,單增區(qū)間為.
(Ⅱ),
的唯一一個(gè)零點(diǎn)是,∴,
由(1)可得:(ⅰ)當(dāng)時(shí),的單減區(qū)間為,
此時(shí)至多有兩個(gè)零點(diǎn),不符合題意
(ⅱ)當(dāng)時(shí),令,
則的圖象關(guān)于點(diǎn)對(duì)稱,
即的圖象關(guān)于中心對(duì)稱,
注意到在上恒正,
要有3個(gè)零點(diǎn),則必須在上取到2個(gè)零點(diǎn),
如圖,
∴極大值,且
則有
,
綜上,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著國內(nèi)電商的不斷發(fā)展,快遞業(yè)也進(jìn)入了高速發(fā)展時(shí)期,按照國務(wù)院的發(fā)展戰(zhàn)略布局,以及國家郵政管理總局對(duì)快遞業(yè)的宏觀調(diào)控,SF快遞收取快遞費(fèi)的標(biāo)準(zhǔn)是:重量不超過1kg的包裹收費(fèi)10元;重量超過1kg的包裹,在收費(fèi)10元的基礎(chǔ)上,每超過1kg(不足1kg,按1kg計(jì)算)需再收5元.某縣SF分代辦點(diǎn)將最近承攬的100件包裹的重量統(tǒng)計(jì)如下:
重量(單位:kg) | (0,1] | (1,2] | (2,3] | (3,4] | (4,5] |
件數(shù) | 43 | 30 | 15 | 8 | 4 |
對(duì)近60天,每天攬件數(shù)量統(tǒng)計(jì)如下表:
件數(shù)范圍 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
件數(shù) | 50 | 150 | 250 | 350 | 450 |
天數(shù) | 6 | 6 | 30 | 1 | 6 |
以上數(shù)據(jù)已做近似處理,將頻率視為概率.
(1)計(jì)算該代辦未來5天內(nèi)不少于2天攬件數(shù)在101~300之間的概率;
(2)①估計(jì)該代辦點(diǎn)對(duì)每件包裹收取的快遞費(fèi)的平均值;
②根據(jù)以往的經(jīng)驗(yàn),該代辦點(diǎn)將快遞費(fèi)的三分之一作為前臺(tái)工作人員的工資和公司利潤,其余的用作其他費(fèi)用.目前該代辦點(diǎn)前臺(tái)有工作人員3人,每人每天攬件不超過150件,日工資110元.代辦點(diǎn)正在考慮是否將前臺(tái)工作人員裁減1人,試計(jì)算裁員前后代辦點(diǎn)每日利潤的數(shù)學(xué)期望,若你是決策者,是否裁減工作人員1人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:.
(1)若直線經(jīng)過拋物線的焦點(diǎn),求拋物線的準(zhǔn)線方程;
(2)若斜率為-1的直線經(jīng)過拋物線的焦點(diǎn),且與拋物線交于,兩點(diǎn),當(dāng)時(shí),求拋物線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,過且斜率為的直線與交于,兩點(diǎn),.
(1)求的方程;
(2)求過點(diǎn),且與的準(zhǔn)線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),是的導(dǎo)函數(shù),則下列結(jié)論中錯(cuò)誤的個(gè)數(shù)是( )
①函數(shù)的值域與的值域相同;
②若是函數(shù)的極值點(diǎn),則是函數(shù)的零點(diǎn);
③把函數(shù)的圖像向右平移個(gè)單位長度,就可以得到的圖像;
④函數(shù)和在區(qū)間內(nèi)都是增函數(shù).
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校進(jìn)行社會(huì)實(shí)踐,對(duì)歲的人群隨機(jī)抽取 1000 人進(jìn)行了一次是否開通“微博”的調(diào)查,開通“微博”的為“時(shí)尚族”,否則稱為“非時(shí)尚族”.通過調(diào)查得到到各年齡段人數(shù)的頻率分布直方圖如圖所示,其中在歲, 歲年齡段人數(shù)中,“時(shí)尚族”人數(shù)分別占本組人數(shù)的、.
(1)求歲與歲年齡段“時(shí)尚族”的人數(shù);
(2)從歲和歲年齡段的“時(shí)尚族”中,采用分層抽樣法抽取6人參加網(wǎng)絡(luò)時(shí)尚達(dá)人大賽,其中兩人作為領(lǐng)隊(duì).求領(lǐng)隊(duì)的兩人年齡都在歲內(nèi)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某沿海地區(qū)計(jì)劃鋪設(shè)一條電纜聯(lián)通A,B兩地,A地位于東西方向的直線MN上的陸地處,B地位于海上一個(gè)燈塔處,在A地用測(cè)角器測(cè)得,在A地正西方向4km的點(diǎn)C處,用測(cè)角器測(cè)得.擬定鋪設(shè)方案如下:在岸MN上選一點(diǎn)P,先沿線段AP在地下鋪設(shè),再沿線段PB在水下鋪設(shè).預(yù)算地下、水下的電纜鋪設(shè)費(fèi)用分別為2萬元/km和4萬元/km,設(shè),,鋪設(shè)電纜的總費(fèi)用為萬元.
(1)求函數(shù)的解析式;
(2)試問點(diǎn)P選在何處時(shí),鋪設(shè)的總費(fèi)用最少,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐的頂點(diǎn)為,底面圓心為,半徑為.
(1)設(shè)圓錐的母線長為,求圓錐的體積;
(2)設(shè),、是底面半徑,且,為線段的中點(diǎn),如圖.求異面直線與所成的角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中.
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若存在,使得不等式成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com