精英家教網 > 高中數學 > 題目詳情

【題目】如圖,O為坐標原點,橢圓C1 + =1(a>b>0)的左、右焦點分別為F1 , F2 , 離心率為e1;雙曲線C2 =1的左、右焦點分別為F3 , F4 , 離心率為e2 , 已知e1e2= ,且|F2F4|= ﹣1.

(1)求C1、C2的方程;
(2)過F1作C1的不垂直于y軸的弦AB,M為AB的中點,當直線OM與C2交于P,Q兩點時,求四邊形APBQ面積的最小值.

【答案】
(1)解:由題意可知, ,且

∵e1e2= ,且|F2F4|= ﹣1.

,且

解得:

∴橢圓C1的方程為 ,雙曲線C2的方程為 ;


(2)解:由(1)可得F1(﹣1,0).

∵直線AB不垂直于y軸,

∴設AB的方程為x=ny﹣1,

聯立 ,得(n2+2)y2﹣2ny﹣1=0.

設A(x1,y1),B(x2,y2),M(x0,y0),

,

= =

∵M在直線AB上,

直線PQ的方程為 ,

聯立 ,得

解得 ,代入

由2﹣n2>0,得﹣ <n<

∴P,Q的坐標分別為 ,

則P,Q到AB的距離分別為: ,

∵P,Q在直線A,B的兩端,

則四邊形APBQ的面積S= |AB|

∴當n2=0,即n=0時,四邊形APBQ面積取得最小值2.


【解析】(1)由斜率公式寫出e1 , e2 , 把雙曲線的焦點用含有a,b的代數式表示,結合已知條件列關于a,b的方程組求解a,b的值,則圓錐曲線方程可求;(2)設出AB所在直線方程,和橢圓方程聯立后得到關于y的一元二次方程,由根與系數的關系得到AB中點M的坐標,并由橢圓的焦點弦公式求出AB的長度,寫出PQ的方程,和雙曲線聯立后解出P,Q的坐標,由點到直線的距離公式分別求出P,Q到AB的距離,然后代入代入三角形面積公式得四邊形APBQ的面積,再由關于n的函數的單調性求得最值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知、、是同一平面上不共線的四點,若存在一組正實數、、,使得,則三個角、( )

A. 都是鈍角B. 至少有兩個鈍角

C. 恰有兩個鈍角D. 至多有兩個鈍角

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)求函數的單調區(qū)間;

(2)若關于的方程有實數解,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形, 為側棱的中點.

(Ⅰ)求證: ∥平面

(Ⅱ)若,,

求證:平面平面

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點分別為線段上的動點,且滿足

(1)若求直線的方程;

(2)證明:的外接圓恒過定點(異于原點)。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知常數a>0,函數f(x)=ln(1+ax)﹣
(1)討論f(x)在區(qū)間(0,+∞)上的單調性;
(2)若f(x)存在兩個極值點x1 , x2 , 且f(x1)+f(x2)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某零售店近5個月的銷售額和利潤額資料如下表:

商店名稱

銷售額/千萬元

3

5

6

7

9

利潤額/百萬元

2

3

3

4

5

(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關關系;

(2)用最小二乘法計算利潤額關于銷售額的回歸直線方程;

(3)當銷售額為4千萬元時,利用(2)的結論估計該零售店的利潤額(百萬元).

[參考公式:]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}滿足:a1=2,且a1 , a2 , a5成等比數列.
(1)求數列{an}的通項公式;
(2)記Sn為數列{an}的前n項和,是否存在正整數n,使得Sn>60n+800?若存在,求n的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前n項和

若三角形的三邊長分別為,,,求此三角形的面積;

探究數列中是否存在相鄰的三項,同時滿足以下兩個條件:此三項可作為三角形三邊的長;此三項構成的三角形最大角是最小角的2倍若存在,找出這樣的三項,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案