設(shè)90°<α<180°,α的終邊上一點為P(x,),cosα=x,sinαtanα的值.

 

答案:
解析:

由三角函數(shù)的定義得:cosα=,cosα=x,

. 

由已知可得:x<0,x=. 

cosα=,sinα=,tanα=.

 


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:數(shù)學教研室 題型:044

設(shè)90°<α<180°,α的終邊上一點為P(x,),cosα=x,sinαtanα的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=2a.

(1)求證:平面SAB⊥平面SAD;

(2)設(shè)SB的中點為M,當為何值時,能使DMMC?請給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,△ABC為直角三角形,∠C=90°,若 =(0,-4),M在軸上,且AM=,點C在軸上移動.

 

(Ⅰ)求點B的軌跡E的方程;  

(Ⅱ)過點F(0,)的直線與曲線E交于P、Q兩點,設(shè)N(0,)(<0),的夾角為,若等恒成立,求的取值范圍;

(Ⅲ)設(shè)以點N為圓心,以半徑的圓與曲線E在第一象限的交點為H,若圓在點H處的切線與曲線E在點H處的切線互相垂直,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,△ABC為直角三角形,∠C=90°,若 =(0,-4),M在軸上,且AM=,點C在軸上移動.

(Ⅰ)求點B的軌跡E的方程;  

(Ⅱ)過點F(0,)的直線與曲線E交于P、Q兩點,設(shè)N(0,)(<0),的夾角為,若恒成立,求的取值范圍;

(Ⅲ)設(shè)以點N為圓心,以半徑的圓與曲線E在第一象限的交點為H,若圓在點H處的切線與曲線E在點H處的切線互相垂直,求的值.

查看答案和解析>>

同步練習冊答案