11.下列不等式一定成立的是(  )
A.lg(x2+$\frac{1}{4}$)>lgx(x>0)B.sin x+$\frac{1}{sinx}$≥2(x≠$\frac{kπ}{2}$,k∈Z)
C.x2+1≥2|x|(x∈R)D.$\frac{1}{{x}^{2}+1}$>1(x∈R)

分析 利用基本不等式的性質(zhì)依次判斷各選項(xiàng)即可得出.

解答 解:對(duì)于A:lg(x2+$\frac{1}{4}$)>lgx(x>0)等價(jià)于${x}^{2}+\frac{1}{4}>x$,即$(x-\frac{1}{2})^{2}>0$,故得x$≠\frac{1}{2}$,而題設(shè)x>0,當(dāng)x=$\frac{1}{2}$時(shí)不成立.
對(duì)于B:sin x+$\frac{1}{sinx}$≥2(x≠$\frac{kπ}{2}$,k∈Z)當(dāng)且僅當(dāng)sin2=1時(shí)取等號(hào).此時(shí)x=$\frac{kπ}{2}$,與題設(shè)x≠$\frac{kπ}{2}$,k∈Z矛盾,∴不成立.
對(duì)于C:x2+1≥2|x|(x∈R)等價(jià)于$|x|+\frac{1}{|x|}≥2$,當(dāng)且僅當(dāng)x=±1取等號(hào).∴成立.
對(duì)于D:$\frac{1}{{x}^{2}+1}$>1(x∈R)等價(jià)于x2+1<1,即x2<0,無解,∴不成立.
故選:C.

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì),考查了靈活解決問題的能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,{an}的前n項(xiàng)和為Sn
(1)求an及Sn
(2)令bn=$\frac{1}{{{a}_{n}}^{2}-1}$(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.“a+b=0“是“|a|=|b|“的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點(diǎn)為A,上頂點(diǎn)為B,右焦點(diǎn)為F,設(shè)線段AB的中點(diǎn)為M,若2$\overrightarrow{MA}$•$\overrightarrow{MF}$+$\overrightarrow{BF}$2<0,則該橢圓離心率的取值范圍為($\sqrt{3}$-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.定義在R上的函數(shù)f(x)既是奇函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)$x∈[0,\frac{π}{2})$時(shí),f(x)=sinx,則$f(\frac{8}{3}π)$的值為( 。
A.$\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若y=alnx+bx2+x在x=1和x=2處有極值,則a=-$\frac{2}{3}$,b=-$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知正數(shù)數(shù)列{an}滿足:Sn=n2+2n-2,其中Sn為數(shù)列{an}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)an; 
(2)令bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=\frac{1-x}{1+{x}^{2}}{e}^{x}$.
(Ⅰ)求f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)證明:當(dāng)f(x1)=f(x2)(x1≠x2)時(shí),x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)x,y均為非零實(shí)數(shù),且滿足$\frac{xsin\frac{π}{5}+ycos\frac{π}{5}}{xcos\frac{π}{5}-ysin\frac{π}{5}}$=tan$\frac{9π}{20}$.
(1)求$\frac{y}{x}$的值;
(2)在△ABC中,若tanC=$\frac{y}{x}$,求sin2A+2cosB的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案