17.已知x+$\frac{1}{x}$=2cosθ,計算x2+$\frac{1}{{x}^{2}}$,x3+$\frac{1}{{x}^{3}}$.并由計算的結(jié)果猜想xn+$\frac{1}{{x}^{n}}$的表達(dá)式.

分析 先求出前四項,猜測$x^n+\frac{1}{x^n}$=2cosnθ,再用數(shù)學(xué)歸納法證明猜測的正確性.

解答 解:因為$x+\frac{1}{x}$=2cosθ,所以可得如下各項:
$x^2+\frac{1}{x^2}$=4cos2θ-2=2(2cos2θ-1)=2cos2θ,
$x^3+\frac{1}{x^3}$=($x+\frac{1}{x}$)($x^2+\frac{1}{x^2}$)-($x+\frac{1}{x}$)=2cos3θ,
$x^4+\frac{1}{x^4}$=($x^2+\frac{1}{x^2}$)2-2=4cos22θ-2=2(2cos22θ-1)=2cos4θ,

可猜想:$x^n+\frac{1}{x^n}$=2cosnθ,
下面用數(shù)學(xué)歸納法證明猜測的正確性.
①當(dāng)k=1,$x+\frac{1}{x}$=2cosθ,猜測成立;
②假設(shè)k=n時猜測成立,即$x^n+\frac{1}{x^n}$=2cosnθ,
那么,當(dāng)k=n+1時,
${x}^{n+1}+\frac{1}{{x}^{n+1}}$=($x+\frac{1}{x}$)($x^n+\frac{1}{x^n}$)-(${x}^{n-1}+\frac{1}{{x}^{n-1}}$)
=2cosθ•2cosnθ-2cos(n-1)θ
=2[2cosθ•cosnθ-cos(n-1)θ]
=2[cos(n+1)θ+cos(n-1)θ-cos(n-1)θ]
=2cos(n+1)θ,
即k=n+1時,猜想也成立,
綜合以上討論得,對任意的正整數(shù)n都有$x^n+\frac{1}{x^n}$=2cosnθ成立.

點評 本題主要考查了歸納推理,以及運用數(shù)學(xué)歸納法證明猜測的正確性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=2x2-alnx在[1,+∞)內(nèi)存在單調(diào)減區(qū)間,則實數(shù)a的取值范圍是(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某市政府欲在如圖所示的矩形ABCD的非農(nóng)業(yè)用地中規(guī)劃出一個休閑娛樂公園(如圖中陰影部分),形狀為直角梯形OPRE(線段EO和RP為兩條底邊),已知AB=2km,BC=6km,AE=BF=4km,其中曲線AF是以A為頂點、AD為對稱軸的拋物線的一部分.
(1)以A為原點,AB所在直線為x軸建立直角坐標(biāo)系,求曲線AF所在拋物線的方程;
(2)求該公園的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.$\sqrt{5}+1$與$\sqrt{5}-1$兩數(shù)的等比中項是(
A.2B.-2C.±2D.以上均不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.定義在D上的函數(shù)f(x)若同時滿足:①存在M>0,使得對任意的x1,x2∈D,都有|f(x1)-f(x2)|<M;②f(x)的圖象存在對稱中心.則稱f(x)為“P-函數(shù)”.
已知函數(shù)f1(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$和f2(x)=lg($\sqrt{{x}^{2}+1}$-x),則以下結(jié)論一定正確的是(  )
A.f1(x)和 f2(x)都是P-函數(shù)B.f1(x)是P-函數(shù),f2(x)不是P-函數(shù)
C.f1(x)不是P-函數(shù),f2(x)是P-函數(shù)D.f1(x)和 f2(x)都不是P-函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)先化簡,再求值:$\frac{{a}^{2}-4}{{a}^{2}+6a+9}$÷$\frac{a-2}{2a+6}$,其中a=-5.
(2)解不等式組$\left\{\begin{array}{l}{\frac{x-3}{2}+3≥x+1}\\{1-3(x-1)<8-x}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列各組函數(shù)中,表示同一函數(shù)的是( 。
A.f(x)=2x-1•2x+1,g(x)=4xB.$f(x)=\sqrt{x^2},g(x)={({\sqrt{x}})^2}$
C.$f(x)=\frac{{{x^2}-2}}{{x-\sqrt{2}}},g(x)=x+\sqrt{2}$D.$f(x)=\sqrt{x+1}•\sqrt{x-1},g(x)=\sqrt{{x^2}-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若變量y與x之間的相關(guān)系數(shù)r=-0.9362,查表得到相關(guān)系數(shù)臨界值r0.05=0.8013,則變量y與x之間(  )
A.不具有線性相關(guān)關(guān)系B.具有線性相關(guān)關(guān)系
C.它們的線性關(guān)系還要進(jìn)一步確定D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知a=2,b=3,C=60°,
(Ⅰ)求邊長c和△ABC的面積;
(Ⅱ)求sin2A的值.

查看答案和解析>>

同步練習(xí)冊答案