某產(chǎn)品的廣告費(fèi)用x萬(wàn)元與銷(xiāo)售額y萬(wàn)元的統(tǒng)計(jì)數(shù)據(jù)如下表
廣告費(fèi)用x(萬(wàn)元)4235
銷(xiāo)售額y(萬(wàn)元)492639m
根據(jù)上表可得回歸方程
y
=bx+a中b為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬(wàn)元時(shí),銷(xiāo)售額為65.5,則a,m為
 
考點(diǎn):線性回歸方程
專(zhuān)題:計(jì)算題,概率與統(tǒng)計(jì)
分析:回歸方程
y
=bx+a中b為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬(wàn)元時(shí),銷(xiāo)售額為65.5,求出a,根據(jù)線性回歸直線過(guò)樣本中心點(diǎn),即可得出結(jié)論.
解答: 解:∵回歸方程
y
=bx+a中b為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬(wàn)元時(shí),銷(xiāo)售額為65.5,
∴a=9.1,
y
=9.4x+9.1
.
x
=
1
4
(4+2+3+5)=3.5,
.
y
=
1
4
(49+26+39+m)=42,
∴m=54.
故答案為:9.1,54.
點(diǎn)評(píng):本題考查線性回歸方程的求法和應(yīng)用,是一個(gè)基礎(chǔ)題,本題解答關(guān)鍵是利用線性回歸直線必定經(jīng)過(guò)樣本中心點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:y=kx-1(k>0)與拋物線C:x2=4y交于點(diǎn)M,N兩點(diǎn),F(xiàn)為拋物線C的焦點(diǎn),若|MF|=2|NF|,則實(shí)數(shù)k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線C經(jīng)過(guò)點(diǎn)(2,2),且與
y2
4
-x2=1具有相同漸進(jìn)線,則雙曲線C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=|2x-
3
4
|+|2x+
5
4
|,設(shè)m,n∈R+,且m+n=1.
(Ⅰ)求不等式f(x)≤
5
2
的解集;
(Ⅱ)求證:
2m+1
+
2n+1
≤2
f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)求值:(1)sin50°(1+
3
tan10°);
(2)tan10°+tan50°+
3
tan10°tan50°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
OA
=(x+
5
,y),
OB
=(x-
5
,y),且|
OA
|+|
OB
|=6,則|2x-3y-12|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)x∈[0,
π
2
]時(shí),f(x)=sin(2x+
π
3
).
(1)求x∈[-
π
2
,0]時(shí),f(x)的解析式;
(2)求函數(shù)f(x)的單增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1-
a
x+1
-ln(x+1)(a為實(shí)常數(shù)),若函數(shù)f(x)的區(qū)間(-1,1)內(nèi)無(wú)極值.則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)從1到9的九個(gè)數(shù)字中取三個(gè)偶數(shù)四個(gè)奇數(shù),試問(wèn):能組成多少個(gè)沒(méi)有重復(fù)數(shù)字的七位數(shù)?其中偶數(shù)排在一起,奇數(shù)也排在一起的有幾個(gè)?
(2)在二項(xiàng)式(
x
+
1
2
4x
n的展開(kāi)式中,只有第五項(xiàng)的二項(xiàng)式系數(shù)最大,把展開(kāi)式中所有的項(xiàng)重新排成一列,求有理項(xiàng)不相鄰的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案