【題目】已知橢圓與雙曲線有公共的焦點(diǎn),的一條漸近線與以的長(zhǎng)軸為直徑的圓相交于兩點(diǎn),若恰好將線段三等分,則

A.B.C.D.

【答案】B

【解析】

先由雙曲線方程確定一條漸近線方程為y=2x,根據(jù)對(duì)稱性易知AB為圓的直徑且AB=2a,利用橢圓與雙曲線有公共的焦點(diǎn),得方程a2-b2=5;設(shè)C1y=2x在第一象限的交點(diǎn)的坐標(biāo),代入C1的方程得;由對(duì)稱性求得直線y=2xC1截得的弦長(zhǎng),根據(jù)C1恰好將線段AB三等分得出a2b2的值,故可得結(jié)論.

由題意, C2的焦點(diǎn)為,一條漸近線方程為y=2x,根據(jù)對(duì)稱性易知AB為圓的直徑且AB=2a

C1的半焦距,于是得

設(shè)C1y=2x在第一象限的交點(diǎn)的坐標(biāo)為(m,2m),代入C1的方程得:

由對(duì)稱性知直線y=2xC1截得的弦長(zhǎng)

由題得:,所以

②③

①④

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一項(xiàng)針對(duì)某一線城市3050歲都市中年人的消費(fèi)水平進(jìn)行調(diào)查,現(xiàn)抽查500名(200名女性,300名男性)此城市中年人,最近一年內(nèi)購買六類高價(jià)商品(電子產(chǎn)品、服裝、手表、運(yùn)動(dòng)與戶外用品、珠寶首飾、箱包)的金額(萬元)的頻數(shù)分布表如下:

女性

金額

頻數(shù)

20

40

80

50

10

男性

金額

頻數(shù)

45

75

90

60

30

1)將頻率視為概率,估計(jì)該城市中年人購買六類高價(jià)商品的金額不低于5000元的概率.

2)把購買六類高價(jià)商品的金額不低于5000元的中年人稱為高收入人群,根據(jù)已知條件完成列聯(lián)表,并據(jù)此判斷能否有95%的把握認(rèn)為高收入人群與性別有關(guān)?

高收入人群

非高收入人群

合計(jì)

女性

60

男性

180

合計(jì)

500

參考公式:,其中

參考附表:

0.10

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線在第一象限內(nèi)的點(diǎn)到焦點(diǎn)的距離為

1,過點(diǎn), 的直線與拋物線相交于另一點(diǎn),求的值

2)若直線與拋物線相交于兩點(diǎn),與圓相交于兩點(diǎn), 為坐標(biāo)原點(diǎn), ,試問:是否存在實(shí)數(shù),使得的長(zhǎng)為定值?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)、、分別是正方體的棱,,的中點(diǎn),則下列命題中的真命題是__________(寫出所有真命題的序號(hào)).

①以正方體的頂點(diǎn)為頂點(diǎn)的三棱錐的四個(gè)面中最多可以四個(gè)面都是直角三角形;

②點(diǎn)在直線上運(yùn)動(dòng)時(shí),總有;

③點(diǎn)在直線上運(yùn)動(dòng)時(shí),三棱錐的體積是定值;

④若是正方體的面,(含邊界)內(nèi)一動(dòng)點(diǎn),且點(diǎn)到點(diǎn)的距離相等,則點(diǎn)的軌跡是一條線段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,.若以為直徑的圓過點(diǎn),則拋物線的焦點(diǎn)到準(zhǔn)線距離為( )

A. 8B. 4或8C. 2D. 2或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】C反應(yīng)蛋白(CRP)是機(jī)體受到微生物入侵或組織損傷等炎癥性刺激時(shí)細(xì)胞合成的急性相蛋白,醫(yī)學(xué)認(rèn)為CRP值介于0-10mg/L為正常值.下面是某患者在治療期間連續(xù)5天的檢驗(yàn)報(bào)告單中CRP值(單位:mg/L)與治療大數(shù)的統(tǒng)計(jì)數(shù)據(jù):

治療天數(shù)x

1

2

3

4

5

CRPy

51

40

35

28

21

1)若CRPy與治療數(shù)x只有線性相關(guān)關(guān)系試用最小乘法求出y關(guān)于x的線性回歸方程,并估計(jì)該者至少需要治療多少天CRP值可以回到正常水平;

2)為均衡城鄉(xiāng)保障待遇,統(tǒng)一保障范同和支付準(zhǔn),為多保人員提供公平的基本醫(yī)療保障.某市城鄉(xiāng)醫(yī)療保險(xiǎn)實(shí)施辦法指出:門診報(bào)銷比例為50%;住院報(bào)銷比例,A類醫(yī)療機(jī)構(gòu)80%,B類醫(yī)療機(jī)構(gòu)60.若張華參加了城鄉(xiāng)基本醫(yī)療保險(xiǎn),他因CRP偏高選擇在醫(yī)療機(jī)構(gòu)治療,醫(yī)生為張華提供了三種治療方案:方案一:門診治療,預(yù)計(jì)每天診療費(fèi)80元;方案二:住院治療,A類醫(yī)療機(jī)構(gòu),入院檢查需花費(fèi)600元,預(yù)計(jì)每天診療費(fèi)100元;方案三:住院治療,B類醫(yī)療機(jī)構(gòu),入院檢查需花費(fèi)400元,預(yù)計(jì)每天診療費(fèi)40元;若張華需要經(jīng)過連續(xù)治療n,請(qǐng)你為張華選擇最經(jīng)濟(jì)實(shí)惠的治療方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】C反應(yīng)蛋白(CRP)是機(jī)體受到微生物入侵或組織損傷等炎癥性刺激時(shí)肝細(xì)胞合成的急性相蛋白,醫(yī)學(xué)認(rèn)為CRP值介于0-10mg/L為正常值下面是某患者在治療期間連續(xù)5天的檢驗(yàn)報(bào)告單中CRP值(單位:mg/L)與治療天數(shù)的統(tǒng)計(jì)數(shù)據(jù):

治療天數(shù)x

1

2

3

4

5

CRPy

51

40

35

28

21

1)若CRPy與治療天數(shù)x具有線性相關(guān)關(guān)系,試用最小二乘法求出y關(guān)于x的線性回歸方程,并估計(jì)該患者至少需要治療多少天CRP值可以到正常水平;

2)為均衡城鄉(xiāng)保障待遇,統(tǒng)一保障范圍和支付標(biāo)準(zhǔn),為參保人員提供公平的基本醫(yī)療保障.某市城鄉(xiāng)醫(yī)療保險(xiǎn)實(shí)施辦法指出:門診報(bào)銷比例為50%:住院報(bào)銷比例,A類醫(yī)療機(jī)構(gòu)80%,B類醫(yī)療機(jī)構(gòu)60.若張華參加了城鄉(xiāng)基本醫(yī)療保險(xiǎn),他因CRP偏高選擇在某醫(yī)療機(jī)構(gòu)治療,醫(yī)生為張華提供了三種治療方案:

方案一:門診治療,預(yù)計(jì)每天診療費(fèi)80元;

方案二:住院治療,A類醫(yī)療機(jī)構(gòu),入院檢查需花費(fèi)600元,預(yù)計(jì)每天診療費(fèi)100元;

方案三:住院治療,B類醫(yī)療機(jī)構(gòu),入院檢查需花費(fèi)400元,預(yù)計(jì)每天診療費(fèi)40元;

若張華需要經(jīng)過連續(xù)治療n天,,請(qǐng)你為張華選擇最經(jīng)濟(jì)實(shí)惠的治療方案.

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形與正所在平面互相垂直,平面,.

(1)證明:平面

(2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綠水青山就是金山銀山.某山村為做好水土保持,退耕還林,在本村的山坡上種植水果,并推出山村游等旅游項(xiàng)目.為預(yù)估今年7月份游客購買水果的情況,隨機(jī)抽樣統(tǒng)計(jì)了去年7月份100名游客的購買金額.分組如下:,, ,得到如圖所示的頻率分布直方圖:

(1)請(qǐng)用抽樣的數(shù)據(jù)估計(jì)今年7月份游客人均購買水果的金額(同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表).

(2)若把去年7月份購買水果不低于80元的游客,稱為“水果達(dá)人”. 填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為“水果達(dá)人”與性別有關(guān)系?

水果達(dá)人

非水果達(dá)人

合計(jì)

10

30

合計(jì)

(3)為吸引顧客,商家特推出兩種促銷方案.方案一:每滿80元可立減10元;方案二:金額超過80元可抽獎(jiǎng)三次,每次中獎(jiǎng)的概率為,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)1次打9折,中獎(jiǎng)2次打8折,中獎(jiǎng)3次打7折.若每斤水果10元,你打算購買12斤水果,請(qǐng)從實(shí)際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.

附:參考公式和數(shù)據(jù):.臨界值表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

同步練習(xí)冊(cè)答案