在直角坐標(biāo)系和以原點(diǎn)為極點(diǎn),以x軸正方向?yàn)闃O軸建立的極坐標(biāo)系中,直線l:y+kx+2=0與曲線C:ρ=2cosθ相交,則k的取值范圍是( 。
A、k∈R
B、k≥-
3
4
C、k<-
3
4
D、k∈R但k≠0
考點(diǎn):簡單曲線的極坐標(biāo)方程
專題:選作題,坐標(biāo)系和參數(shù)方程
分析:先將原極坐標(biāo)方程ρ=2cosθ兩邊同乘以ρ后化成直角坐標(biāo)方程,再利用直角坐標(biāo)方程進(jìn)行求解.
解答: 解:將原極坐標(biāo)方程ρ=2cosθ,化為:ρ2=2ρcosθ,化成直角坐標(biāo)方程為:x2+y2-2x=0,
即(x-1)2+y2=1.
則圓心到直線的距離d=
|k+2|
k2+1
<1,
解之得:k<-
3
4

故選:C.
點(diǎn)評(píng):本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正實(shí)數(shù)a、b、c滿足條件a+b+c=3.
(Ⅰ)求證:
a
+
b
+
c
≤3;
(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l經(jīng)過點(diǎn)P(5,5),且與圓C:x2+y2=25相交,截得弦長為4
5
,則l的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-2sin(x-
π
3
)在區(qū)間[0,π]上的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)不等式組
6x-y≥8
2x-3y≤0
2x+y≤8
表示的平面區(qū)域?yàn)閞,且函數(shù)y=logax的圖象經(jīng)過區(qū)域r,則實(shí)數(shù)a的取值范圍是( 。
A、(1,
3
]
B、[
42
,
3
2
]
C、[
42
,
3
]
D、[
3
2
,
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,M、N、Q分別為AB,BB1,C1D1的中點(diǎn),過M、N、Q的平面與正方體相交截得的圖形是(  )
A、三角形B、四邊形
C、五邊形D、六邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=loga(2x2+x)(a>0,a≠1)在區(qū)間(
1
2
,1)內(nèi)恒有f(x)>0,則f(x)的單調(diào)遞增區(qū)間是( 。
A、(-∞,-
1
4
B、(-
1
4
,+∞)
C、(-∞,-
1
2
D、(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,最小正周期為π的偶函數(shù)是( 。
A、y=sin2x
B、y=cos
x
2
C、y=sin2x+cos2x
D、y=
1-tan2x
1+tan2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中.∠BAC=120°,AB=3,BC=7.
(1)求AC的長;
(2)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案