15.在直角坐標(biāo)系xoy中,曲線C1:$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),t≠0),其中0≤α<π,在以O(shè)為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sinθ,曲線C3:ρ=2$\sqrt{3}$cosθ.
(Ⅰ)求C2與C3交點的直角坐標(biāo);
(Ⅱ)若C2與C1相交于點A,C3與C1相交于點B,求|AB|的最大值.

分析 (Ⅰ)將C2與C3轉(zhuǎn)化為直角坐標(biāo)方程,解方程組即可求出交點坐標(biāo);
(Ⅱ)求出A,B的極坐標(biāo),利用距離公式進(jìn)行求解.

解答 解:(Ⅰ)曲線C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①
C3:ρ=2$\sqrt{3}$cosθ,則ρ2=2$\sqrt{3}$ρcosθ,即x2+y2=2$\sqrt{3}$x,②
由①②得$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}}\\{y=\frac{3}{2}}\end{array}\right.$,
即C2與C3交點的直角坐標(biāo)為(0,0),($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$);
(Ⅱ)曲線C1的直角坐標(biāo)方程為y=tanαx,
則極坐標(biāo)方程為θ=α(ρ∈R,ρ≠0),其中0≤a<π.
因此A得到極坐標(biāo)為(2sinα,α),B的極坐標(biāo)為(2$\sqrt{3}$cosα,α).
所以|AB|=|2sinα-2$\sqrt{3}$cosα|=4|sin(α$-\frac{π}{3}$)|,
當(dāng)α=$\frac{5π}{6}$時,|AB|取得最大值,最大值為4.

點評 本題主要考查極坐標(biāo)方程和參數(shù)方程的應(yīng)用,考查學(xué)生的運算和轉(zhuǎn)化能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知p:x≥k,q:(x+1)(2-x)<0,如果p是q的充分不必要條件,則k的取值范圍是( 。
A.[2,+∞)B.(2,+∞)C.[1,+∞)D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若三直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點,則k=( 。
A.-2B.$-\frac{1}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知正項數(shù)列{an}和{bn}中,a1=a(0<a<1),b1=1-a.當(dāng)n≥2時,an=an-1bn,bn=$\frac{_{n-1}}{1-{{a}_{n-1}}^{2}}$.
(1)證明:對任意n∈N*,有an+bn=1;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.化簡$\frac{cos(α-π)tan(α-2π)tan(2π-α)}{sin(π+α)}$的結(jié)果是( 。
A.tan2αB.-tan2αC.tanαD.-tanα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$,設(shè)△ABC的內(nèi)角A、B、C的對邊長分別為a,b,c,且c=$\sqrt{3}$,f(c)=0,若向量$\overrightarrow{m}$=(1,sinA)與向量$\overrightarrow{n}$=(2,sinB)共線,求a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,過焦點F且斜率為$\sqrt{3}$的直線與雙曲線右支有且只有一個交點,則雙曲線的離心率的取值范圍是( 。
A.[$\sqrt{3}$,+∞)B.(1,$\sqrt{3}$]C.[2,+∞)D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.?dāng)?shù)列的通項公式是an=4n-1,則a6等于(  )
A.21B.22C.23D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=|x-a|+|x+1|,方程f(x)=$\sqrt{1-{x}^{2}}$有解時,a的取值范圍為( 。
A.[-2,0]B.[-$\sqrt{2},0$]C.[-$\sqrt{5}$,1]D.[1-$\sqrt{5}$,0]

查看答案和解析>>

同步練習(xí)冊答案