分析 (1)求出函數(shù)的定義域,函數(shù)的導數(shù),利用導函數(shù)的符號,求解函數(shù)的單調(diào)區(qū)間.
(2)利用(1)的結果,直接求解函數(shù)的最值即可.
解答 解:(1)函數(shù)f(x)的定義域為(-∞,+∞),…(1分)
f′(x)=ex (x2-x+1)+ex (2x-1)=ex (x2+x). …(3分)
由x2+x=0得x=-1,x=0,又ex>0,
∴若x<-1,則f′(x)>0;若-1<x<0,則f′(x)<0;若x>0,則f′(x)>0.
∴f(x)的增區(qū)間為(-∞,-1)和(0,﹢∞),減區(qū)間為(-1,0). …(8分)
(2)由(1)知f(x)在[-1,1]上的最小值為f(0),
∴[f(x)]min=f(0)=1,∴當m<1時,不等式f(x)>m恒成立.
即實數(shù)m的取值范圍是(-∞,1). …(12分)
點評 本題考查函數(shù)的導數(shù)的應用,函數(shù)的單調(diào)性以及閉區(qū)間上的函數(shù)的最值的求法,考查轉(zhuǎn)化思想以及計算能力.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-4,4] | B. | [-2$\sqrt{2}$,2$\sqrt{2}$] | C. | (-∞,4] | D. | (-∞,2$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com