【題目】設(shè)命題:實(shí)數(shù)滿足 (其中),命題:實(shí)數(shù)滿足

(1)若,且為真命題,求實(shí)數(shù)的取值范圍.

(2)若的必要不充分條件,求實(shí)數(shù)的取值范圍.

【答案】(1);(2)

【解析】

(1)當(dāng)a=1時,解得1<x<4,得到當(dāng)p為真時,實(shí)數(shù)x的取值范圍是1<x<4.當(dāng)q為真時,解得2<x≤5,進(jìn)而根據(jù)p∧q為真,即可求解;

(2)由的必要不充分條件,即p是q的必要不充分條件,即,根據(jù)集合的運(yùn)算即可求解.

(1)當(dāng)a=1時,x2-5ax+4a2<0即為x2-5x+4<0,解得1<x<4,

當(dāng)p為真時,實(shí)數(shù)x的取值范圍是1<x<4.當(dāng)q為真時,由,知2<x≤5.

若p∧q為真,則p真且q真,所以實(shí)數(shù)x的取值范圍是(2,4).

(2)的必要不充分條件,即p是q的必要不充分條件.

設(shè)A={x|p(x)},B={x|q(x)},則.由x2-5ax+4a2<0得(x-4a)(x-a)<0,∵a>0,∴A={x|a<x<4a},又B={x|2<x≤5},則a≤2且4a>5,解得<a≤2.

∴實(shí)數(shù)a的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中, , 分別為, 的中點(diǎn), , .

(1)求證:直線平面;

(2)求證:直線 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個子中裝有四張卡片,每張卡片上寫有一個數(shù)字,數(shù)字分別是,現(xiàn)盒子中隨機(jī)抽取卡片,每張卡片被抽到的概率相等.

(1)若一次抽取三張卡片,求抽到的三張卡片上的數(shù)字之和大于的概率

(2)若第一次抽一張卡片,放回后勻再抽取一張卡片,求兩次抽取中至少有一次到寫有數(shù)字的卡片的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術(shù)的特點(diǎn),在中國文化中占有重要的歷史地位,在中國的陶瓷史上留下了濃墨重彩的一筆,唐三彩的生產(chǎn)至今已有1300多年的歷史,對唐三彩的復(fù)制和仿制工藝,至今也有百余年的歷史。某陶瓷廠在生產(chǎn)過程中,對仿制的100件工藝品測得其重量(單位; )數(shù)據(jù),將數(shù)據(jù)分組如下表:

分組

頻數(shù)

頻率

4

26

28

10

2

合計(jì)

100

(1)在答題卡上完成頻率分布表;

(2)以表中的頻率作為概率,估計(jì)重量落在中的概率及重量小于2.45的概率是多少?

(3)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值(例如區(qū)間的中點(diǎn)值是作為代表.據(jù)此,估計(jì)這100個數(shù)據(jù)的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點(diǎn)為,準(zhǔn)線為,是拋物線上的兩個動點(diǎn),且滿足.設(shè)線段的中點(diǎn)上的投影為,則的最大值是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》第三章“衰分”介紹了比例分配問題,“衰分”是按比例遞減分配的意思,通常稱遞減的比例為“衰分比”.如:已知三人分配獎金的衰分比為,若分得獎金1000元,則所分得獎金分別為900元和810.某科研所四位技術(shù)人員甲、乙、丙、丁攻關(guān)成功,共獲得獎金59040元,若甲、乙、丙、丁按照一定的“衰分比”分配獎金,且甲與丙共獲得獎金32800元,則“衰分比”與丙所獲得的獎金分別為(

A.12800B.,12800

C.10240D.,10240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓內(nèi)一定點(diǎn),動圓過點(diǎn)且與圓內(nèi)切.記動圓圓心的軌跡為.

(Ⅰ)求軌跡方程;

(II)過點(diǎn)的動直線l交軌跡M,N兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個定點(diǎn)Q,使得以線段MN為直徑的圓恒過點(diǎn)Q?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在中,角的對邊分別為,且.

(1)求的值;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高鐵、網(wǎng)購、移動支付和共享單車被譽(yù)為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強(qiáng)勁活力,某移動支付公司在我市隨機(jī)抽取了100名移動支付用戶進(jìn)行調(diào)查,得到如下數(shù)據(jù):

每周移動支付次數(shù)

1次

2次

3次

4次

5次

6次及以上

4

3

3

7

8

30

6

5

4

4

6

20

合計(jì)

10

8

7

11

14

50

(1)如果認(rèn)為每周使用移動支付超過3次的用戶“喜歡使用移動支付”,能否在犯錯誤概率不超過的前提下,認(rèn)為是否“喜歡使用移動支付”與性別有關(guān)?

(2)每周使用移動支付6次及6次以上的用戶稱為“移動支付達(dá)人”,視頻率為概率,在我市所有“移動支付達(dá)人”中,隨機(jī)抽取4名用戶,

①求抽取的4名用戶中,既有男“移動支付達(dá)人”又有女“移動支付達(dá)人”的概率;

②為了鼓勵女性用戶使用移動支付,對抽出的女“移動支付達(dá)人”每人獎勵500元,記獎勵總金額為,求的數(shù)學(xué)期望.

附表及公式:

查看答案和解析>>

同步練習(xí)冊答案