一個正方形的中心到各頂點的連線,能構(gòu)成多少個向量?試寫出所構(gòu)成的全部向量;若正方形的邊長為1,求所有向量的模.
考點:向量的模
專題:計算題,平面向量及應用
分析:作出圖形,即可得出結(jié)論.
解答: 解:如圖所示,全部向量為
OA
,
OB
,
OC
OD

若正方形的邊長為1,所有向量的模均為
2
2
點評:本題考查向量的概念,考查向量的模,考查數(shù)形結(jié)合的數(shù)學思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈Z,b∈R.
(Ⅰ)若a1=b1,a2<b2,求數(shù)列{bn}的前n項和;
(Ⅱ)證明:當a=2,b=
2
時,數(shù)列{bn}中的任意三項都不能構(gòu)成等比數(shù)列;
(Ⅲ)設A={a1,a2,a3,…},B={b1,b2,b3,…},設C=A∩B.當b=1時,求出相應的集合C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△EFG中,點E(-1,2),點F(-2,-3),點G(1,1),求EG邊上的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
3
,左焦點為F(-1,0),
(1)設A,B分別為橢圓的左、右頂點,過點F且斜率為k的直線L與橢圓C交于M,N兩點,若
AM
NB
+
AN
MB
=7求直線L的方程;
(2)橢圓C上是否存在三點P,E,G,使得S△OPE=S△OPG=S△OEG=
6
2
?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

x
1
4
+1
x
1
2
+x
1
4
+1
-
x
1
4
-1
x
1
2
-x
1
4
+1
=
2
7
,求x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,平面四邊形ABCD的四個頂點都在球O的表面上,AB為球O的直徑,P為球面上一點,且PO⊥平面ABCD,NC=CD=DA=2,點M為PA的中點.
(1)證明:平面PBC∥平面ODM;
(2)求平面PBC與平面PAD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(Ⅰ)已知函數(shù):f(x)=2n-1(xn+a)-(x+a)n,(x∈[0,+∞),n∈N*)求函數(shù)f(x)的最小值;
(Ⅱ)證明:
a n+b n
2
≥(
a+b
2
n(a>0,b>0,n∈N*);
(Ⅲ)定理:若a1,a2,a3,ak均為正數(shù),則有
a
n
1
+a
n
2
+a
n
3
+…
+a
n
k
k
≥(
a1+a2+a3+…ak
k
n成立(其中k≥2,k∈N*,k為常數(shù).請你構(gòu)造一個函數(shù)g(x),證明:當a1,a2,a3,…ak,ak+1均為正數(shù)時,
a
n
1
+a
n
2
+a
n
3
+
…a
n
k+1
k+1
≥(
a1+a2+a3+…ak+1
k+1
n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}中,若a3a5a7a9=16,則a5a7=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(cosθ)=sin2θ-3sinθ,則f(2cos
π
3
)=
 

查看答案和解析>>

同步練習冊答案