【題目】設(shè)f(x)的定義域?yàn)椋?,+∞),且在(0, +∞)是遞增的,
(1)求證:f(1)=0,f(xy)=f(x)+ f(x)
(2)設(shè)f(2)=1,解不等式
【答案】(1)詳見(jiàn)解析(2){x|3<x≤4}
【解析】
試題分析:(1)令x=y=1得f(1)=0,則有;(2)由,然后可求f(4)=2,轉(zhuǎn)化為不等式求解
試題解析:(1)證明:,令x=y=1,則有:f(1)=f(1)-f(1)=0,…2分
。…………4分
(2)解:∵
∵2=2×1=2f(2)=f(2)+f(2)=f(4),
∴等價(jià)于:①, ………………………………8分
且x>0,x-3>0[由f(x)定義域?yàn)椋?,+∞)可得]…………………………………10分
∵,4>0,又f(x)在(0,+∞)上為增函數(shù),
∴①。又x>3,∴原不等式解集為:{x|3<x≤4}…12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長(zhǎng)度,直線的極坐標(biāo)方程.
(1)當(dāng)時(shí),判斷直線與的關(guān)系;
(2)當(dāng)上有且只有一點(diǎn)到直線的距離等于時(shí),求上到直線距離為的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時(shí),求證:時(shí),;
(2)試討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從一批乒乓球產(chǎn)品中任取一個(gè),如果其質(zhì)量小于4.8克的概率是0.3,質(zhì)量不小于4.85克的概率是0.32,則質(zhì)量在[4.8,4.85)克范圍內(nèi)的概率是( )
A. 0.62 B. 0.38 C. 0.7 D. 0.68
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用反證法證明命題:“三角形三個(gè)內(nèi)角至少有一個(gè)大于或等于60°”時(shí),應(yīng)假設(shè)( )
A. 三個(gè)內(nèi)角都小于60° B. 三個(gè)內(nèi)角都大于或等于60°
C. 三個(gè)內(nèi)角至多有一個(gè)小于60° D. 三個(gè)內(nèi)角至多有兩個(gè)大于或等于60°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大衍數(shù)列,來(lái)源于《乾坤譜》中對(duì)易傳“大衍之?dāng)?shù)五十”的推論.主要用于解釋中國(guó)傳統(tǒng)文化中的太極衍生原理.?dāng)?shù)列中的每一項(xiàng),都代表太極衍生過(guò)程中,曾經(jīng)經(jīng)歷過(guò)的兩儀數(shù)量總和,是中華傳統(tǒng)文化中隱藏著的世界數(shù)學(xué)史上第一道數(shù)列題.其前10項(xiàng)依次是0,2,4,8,12,18,24,32,40,50,…則此數(shù)列第20項(xiàng)為
A. 180 B. 200 C. 128 D. 162
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在(-∞,+∞)上的奇函數(shù),若對(duì)于任意的實(shí)數(shù)x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2)時(shí),f(x)=log2(x+1),則f(-2 015)+f(2 016)的值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從一箱產(chǎn)品中隨機(jī)地抽取一件,設(shè)事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.則事件“抽到的是二等品或三等品”的概率為( )
A. 0.7 B. 0.65
C. 0.35 D. 0.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com