【題目】定義函數(shù)如下表,數(shù)列滿足,. 若,則( )
A. 7042 B. 7058 C. 7063 D. 7262
【答案】C
【解析】
利用函數(shù)f(x),可得數(shù)列{an}是:2,5,1,3,4,6,…是一個(gè)周期性變化的數(shù)列,求出一個(gè)周期內(nèi)的和,進(jìn)而求得答案.
由題意,∵a1=2,且對(duì)任意自然數(shù)均有an+1=f(an),
∴a2=f(a1)=f(2)=5,即a2=5,
a3=f(a2)=f(5)=1,即a3=1,
a4=f(a3)=f(1)=3,即a4=3,
a5=f(a4)=f(3)=4,即a5=4,
a6=f(a5)=f(4)=6,即a6=6,
a7=f(a6)=f(6)=2,即a7=2,
可知數(shù)列{an}:2,5,1,3,4,6,2,5,1…是一個(gè)周期性變化的數(shù)列,周期為:6.
且a1+a2+a3+…+a6=21.
故a1+a2+a3+…+a2018=336×(a1+a2+a3+…+a6)+a1+a2=7056+2+5=7063.
故選C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)經(jīng)過(guò)短短幾年的發(fā)展,員工近百人.不知何因,人員雖然多了,但員工的實(shí)際工作效率還不如從前.年月初,企業(yè)領(lǐng)導(dǎo)按員工年齡從企業(yè)抽選位員工交流,并將被抽取的員工按年齡(單位:歲)分為四組:第一組,第二組,第三組,第四組,且得到如下頻率分布直方圖:
(1)求實(shí)數(shù)的值;
(2)若用簡(jiǎn)單隨機(jī)抽樣方法從第二組、第三組中再隨機(jī)抽取人作進(jìn)一步交流,求“被抽取得人均來(lái)自第二組”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=,下列結(jié)論中錯(cuò)誤的是
A. , f()=0
B. 函數(shù)y=f(x)的圖像是中心對(duì)稱圖形
C. 若是f(x)的極小值點(diǎn),則f(x)在區(qū)間(-∞,)單調(diào)遞減
D. 若是f(x)的極值點(diǎn),則()=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( )
A.若事件與事件是互斥事件,則
B.若事件與事件是對(duì)立事件:則
C.某人打靶時(shí)連續(xù)射擊三次,則事件“至少兩次中靶”與事件“至多有一次中靶”是對(duì)立事件
D.把紅橙黃3張紙牌隨機(jī)分給甲乙丙3人,每人分得1張,則事件“甲分得的不是紅牌”與事件“乙分得的不是紅牌”是互斥事件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】銷售某種活蝦,根據(jù)以往的銷售情況,按日需量x(公斤)屬于[0,100),[100,200),[200,300),[300,400),[400,500] 進(jìn)行分組,得到如圖所示的頻率分布直方圖.
這種活蝦經(jīng)銷商進(jìn)價(jià)成本為每公斤15元,當(dāng)天進(jìn)貨當(dāng)天以每公斤20元進(jìn)行銷售,當(dāng)天未售出的須全部以每公斤10元賣給冷凍庫(kù).某水產(chǎn)品經(jīng)銷商某天購(gòu)進(jìn)了300公斤這種活蝦,設(shè)當(dāng)天利潤(rùn)為Y元.
(1)求Y關(guān)于x的函數(shù)關(guān)系式;
(2)結(jié)合直方圖估計(jì)利潤(rùn)Y不小于300元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在底面為平行四邊形的四棱錐中,過(guò)點(diǎn)的三條棱PA、AB、AD兩兩垂直且相等,E,F(xiàn)分別是AC,PB的中點(diǎn).
(Ⅰ)證明:EF//平面PCD;
(Ⅱ)求EF與平面PAC所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】德國(guó)數(shù)學(xué)家科拉茨1937年提出一個(gè)著名的猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘3加1(即),不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到1.對(duì)于科拉茨猜想,目前誰(shuí)也不能證明,也不能否定.現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)(首項(xiàng))按照上述規(guī)則進(jìn)行變換后的第9項(xiàng)為1(注:1可以多次出現(xiàn)),則的所有不同值的個(gè)數(shù)為( )
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
①映射不一定是函數(shù),但函數(shù)一定是其定義域到值域的映射;
②函數(shù)的反函數(shù)是,則;
③函數(shù)在上遞減,則的范圍為;
④若a是第一象限的角,則也是第一象限的角.
其中所有正確命題的序號(hào)是
A.①③B.②③C.①④D.②④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com