【題目】已知函數(shù)f(x)=cos2 + sinωx﹣ (ω>0),x∈R,若f(x)在區(qū)間(π,2π)內(nèi)沒有零點(diǎn),則ω的取值范圍是(
A.(0, ]
B.(0, ]∪[
C.(0, ]
D.(0, ]∪[ , ]

【答案】B
【解析】解:函數(shù)f(x)=cos2 + sinωx﹣ = cosωx+ sinωx=sin(ωx+ ), 可得T= ≥π,0<ω≤2,f(x)在區(qū)間(π,2π)內(nèi)沒有零點(diǎn),函數(shù)的圖象如圖兩種類型,結(jié)合三角函數(shù)可得:
,

解得ω∈(0, ]∪[ , ).
故選:B.
利用兩角和與差的三角函數(shù)化簡函數(shù)的解析式,利用函數(shù)的零點(diǎn)以及函數(shù)的周期,列出不等式求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若y=(m﹣1)x2+2mx+3是偶函數(shù),則f(﹣1),f(﹣ ),f( )的大小關(guān)系為(
A.f( )>f( )>f(﹣1)
B.f( )<f(﹣ )<f(﹣1)??
C.f(﹣ )<f( )<f(﹣1)
D.f(﹣1)<f( )<f(﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)镽的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x﹣a2|﹣a2 , 且對(duì)x∈R,恒有f(x﹣2)<f(x),則實(shí)數(shù)a的取值范圍為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)4cosωx·sin(ωx)(ω>0)的最小正周期為π

(1)ω的值;

(2)討論f(x)在區(qū)間[0]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到y(tǒng)= cos2x+sinxcosx的圖象,只需把y=sin2x的圖象上所有點(diǎn)(
A.向左平移 個(gè)單位,再向上移動(dòng) 個(gè)單位
B.向左平移 個(gè)單位,再向上移動(dòng) 個(gè)單位
C.向右平移 個(gè)單位,再向下移動(dòng) 個(gè)單位
D.向右平移 個(gè)單位,再向下移動(dòng) 個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)y=f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(0)=1,則不等式f(x)<ex的解集為(
A.(﹣∞,e4
B.(e4 , +∞)
C.(﹣∞,0)
D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2lnx.
(1)求證:f(x)在(1,+∞)上單調(diào)遞增.
(2)若f(x)≥2tx﹣ 在x∈(0,1]內(nèi)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù)f(x)= ,有下列5個(gè)結(jié)論: ①任取x1 , x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;
②函數(shù)y=f(x)在區(qū)間[4,5]上單調(diào)遞增;
③f(x)=2kf(x+2k)(k∈N+),對(duì)一切x∈[0,+∞)恒成立;
④函數(shù)y=f(x)﹣ln(x﹣1)有3個(gè)零點(diǎn);
⑤若關(guān)于x的方程f(x)=m(m<0)有且只有兩個(gè)不同實(shí)根x1 , x2 , 則x1+x2=3.
則其中所有正確結(jié)論的序號(hào)是 . (請(qǐng)寫出全部正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(πx+ )和函數(shù)g(x)=cos(πx+ )在區(qū)間[﹣ , ]上的圖象交于A,B,C三點(diǎn),則△ABC的面積是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案