二項(xiàng)式(x2-
1
x
6的展開式中含x3的項(xiàng)的系數(shù)是
 
.(用數(shù)字作答)
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:先求出二項(xiàng)式展開式的通項(xiàng)公式,再令x的冪指數(shù)等于3,求得r的值,即可求得展開式中含x3的項(xiàng)的系數(shù).
解答: 解:二項(xiàng)式(x2-
1
x
6的展開式的通項(xiàng)公式為Tr+1=
C
r
6
•(-1)r•x12-3r,
令12-3r=3,求得r=3,可得中含x3的項(xiàng)的系數(shù)-
C
3
6
=-20,
故答案為:-20.
點(diǎn)評:本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開式的通項(xiàng)公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若sin2α=
5
5
,sin(β-α)=
10
10
,且α∈[
π
4
,π],β∈[π,
2
],則α+β的值是( 。
A、
4
B、
4
C、
4
4
D、
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知區(qū)域Ω={(x,y)|0≤y≤
4-x2
},函數(shù)f(x)=
a
a2-1
(ax-a-x),其中a>0且a≠1,集合A={m<0|f(1-m)+f(1-m2)≤0},區(qū)域M={(x,y)∈Ω|(x-m)(x-y+2)≤0,m∈A}.若向區(qū)域內(nèi)隨即投一點(diǎn)Q,則點(diǎn)Q落在區(qū)域M內(nèi)的概率P(M)=( 。
A、
π+2
B、
π-2
C、
π-1
D、
3π+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個算法的程序框圖,若輸入的x的值為2,則輸出的y的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2,1),
b
=(1,-3),則
a
+2
b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>1,則函數(shù)y=2x+
4
2x-1
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

小李從甲地到乙地的平均速度為a,從乙地到甲地的平均速度為b(a>b>0),他往返甲乙兩地的平均速度為v,則( 。
A、v=
a+b
2
B、v=
ab
C、
ab
<v<
a+b
2
D、b<v<
ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)n∈N*,圓Cn:(x-
1
n
)2+(y-1)2=
4n+1-1
4n+1
的面積為Sn,則
lim
n→+∞
Sn
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)p為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)上任意一點(diǎn),過點(diǎn)p作雙曲線的漸近線的平行線,分別與兩漸近線交于M,N兩點(diǎn),若|PM|•|PN|=b2,則該雙曲線的離心率為
 

查看答案和解析>>

同步練習(xí)冊答案