16.已知集合A={x|0≤x≤2},B={y|y=2x,x>0},則A∩B=( 。
A.(1,2]B.[0,1)∪(2,+∞)C.[0,1]D.[0,2]

分析 先根據(jù)函數(shù)的值域求出集合B,由A與B求出兩集合的交集即可.

解答 解:∵集合A={x|0≤x≤2}=[0,2],B={y|y=2x,x>0}=(1,+∞),
∴A∩B=(1,2],
故選:A.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)數(shù)列{an}滿(mǎn)足a1=4,2$\sqrt{{a}_{n}}$=$\sqrt{{a}_{n}{a}_{n+1}}$+1,n∈N*
(1)證明:數(shù)列{$\frac{1}{\sqrt{{a}_{n}}-1}$}是等差數(shù)列;
(2)求使lga1+lga2+…+lgan>4成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)x,y,z∈R,且$\frac{(x-1)^{2}}{16}$+$\frac{(y+2)^{2}}{5}$+$\frac{(z-3)^{2}}{4}$=1,求x+y+z最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=(m2-m-1)x2m-3是冪函數(shù),且在x∈(0,+∞)上是減函數(shù),則實(shí)數(shù)m=( 。
A.2B.-1C.2或-1D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知數(shù)列{an}中,a1=3,a2=5,且對(duì)于任意的大于2的正整數(shù)n,有an=an-1-an-2則a11=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.定義域?yàn)镽的函數(shù)f(x)滿(mǎn)足:對(duì)任意的m,n∈R有f(m+n)=f(m)•f(n),且當(dāng)x≥0時(shí),有0<f(x)<1,f(4)=$\frac{1}{16}$.
(1)求f(0)的值;
(2)證明:f(x)>0在R上恒成立;
(3)證明:f(x)在R上是減函數(shù);
(4)若x>0時(shí),不等式f(x+ax)>f(2+x2)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知全集U=R,集合A={x|-7≤2x-1≤7},B={x|m-1≤x≤3m-2}.
(1)m=3時(shí),求A∪(∁UB);
(2)若A∩B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1.左右焦點(diǎn)分別為F1,F(xiàn)2
(1)求橢圓的右焦點(diǎn)F2到對(duì)應(yīng)準(zhǔn)線的距離;
(2)如果橢圓上第一象限的點(diǎn)P到右準(zhǔn)線的距離為$\frac{16}{3}$,求點(diǎn)P到左焦點(diǎn)F1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=log2(2x+1).
(1)求證:函數(shù)f(x)在(-∞,+∞)內(nèi)單調(diào)遞增;
(2)記f-1(x)為函數(shù)f(x)的反函數(shù).若關(guān)于x的方程f-1(x)=m+f(x)在[1,2]上有解,求m的取值范圍;
(3)若f(x+t)>2x對(duì)于x∈[1,2]恒成立,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案