20.已知三角形ABC中,A為銳角,且$\sqrt{3}$b=2asinB
(1)求A,
(2)若a=7,三角形ABC的面積為10$\sqrt{3}$,求b+c的值.

分析 ﹙1﹚由正弦定理化簡已知結(jié)合sinB≠0,可得sinA=$\frac{\sqrt{3}}{2}$且A為銳角,即可解得A的值.
(2)利用三角形面積公式解得:bc=40,由余弦定理即可求得b+c的值.

解答 解:﹙1﹚由正弦定理知a=2RsinA,b=2RsinB,
∴$\sqrt{3}$×2RsinB=2×2RsinAsinB,sinB≠0,
∴sinA=$\frac{\sqrt{3}}{2}$且A為銳角,
∴A=60°
(2)∵S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$bc×$\frac{\sqrt{3}}{2}$=10$\sqrt{3}$,
∴即解得:bc=40,
∴由余弦定理可求得:49=b2+c2-2bccosA=(b+c)2-3bc=(b+c)2-120,
∴b+c=13.

點評 本題主要考查了正弦定理,余弦定理,三角形面積公式的綜合應(yīng)用,屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,若x=4,則輸出的y=( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(x+1),若f(a)=3,則a的值為( 。
A.-$\frac{3}{4}$B.7C.-$\frac{7}{8}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,已知a=2,b=$\sqrt{7}$,∠B=$\frac{π}{3}$,則△ABC的面積為$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,角A,B所對的邊分別為a,b,若a=3bsinA,則sinB=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)等差數(shù)列{an},{bn}的前n項和分別為Sn,Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{4n-2}{3n+4}$,則$\frac{{a}_{7}}{_{7}}$=$\frac{50}{43}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)等差數(shù)列{an}的前n項和為Sn,若a3=-11,a6+a10=-2,則當(dāng)Sn取得最小值時,n的值為(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.證明以點A(3,4),B(-2,-1),C(4,1)為頂點的三角形是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求tan$(-\frac{35π}{6})$sin$(-\frac{46π}{3})$-cos$\frac{37π}{6}$tan$\frac{55π}{6}$的值.

查看答案和解析>>

同步練習(xí)冊答案