已知函數(shù)的最小正周期為.
(Ⅰ)求的值;
(Ⅱ)求函數(shù)在區(qū)間上的值域.

(Ⅰ);(Ⅱ).

解析試題分析:(Ⅰ)以向量數(shù)量積為載體,通過二倍角公式化成一角一函數(shù),再求的值;(Ⅱ)由的范圍求出的范圍,再求正弦值的范圍即值域.
試題解析:(Ⅰ)依據(jù)題意,
           (1分)

.                  (4分)
函數(shù)的最小正周期T=,
               (6分)
(Ⅱ)由(Ⅰ)知            (7分)
當(dāng)時,可得        (8分)
               (11分)
所以函數(shù)上的值域是.    (12分)
考點:1.二倍角公式;2.數(shù)量積運算;3.三角函數(shù)的性質(zhì)(周期性、值域等).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,其中向量,.在中,角A、B、C的對邊分別為,,.
(1)如果三邊,依次成等比數(shù)列,試求角的取值范圍及此時函數(shù)的值域;
(2) 在中,若,邊,,依次成等差數(shù)列,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)在區(qū)間上的最大值和最小值;
(2)若,其中 求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是半徑為2,圓心角為的扇形,是扇形的內(nèi)接矩形.
(Ⅰ)當(dāng)時,求的長;
(Ⅱ)求矩形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,函數(shù)的最小正周期為.

(Ⅰ)試求的值;
(Ⅱ)在圖中作出函數(shù)在區(qū)間上的圖象,并根據(jù)圖象寫出其在區(qū)間上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,角所對的邊分別為,已知,
(Ⅰ)求的大小;
(Ⅱ)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).(1)求函數(shù)的最小正周期和最小值;(2)若,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知某海濱浴場的海浪高達(dá)y(米)是時間t(0≤t≤24,單位:小時)的函數(shù),記作y=f(t).下表是某日各時的浪高數(shù)據(jù).

t(時)
0
3
6
9
12
15
18
21
24
y(米)
1.5
1.0
0.5
1.0
1.5
1.0
0.5
0.99
1.5
經(jīng)長期觀測,y=f(t)的曲線可近似地看成是函數(shù)y=Acosωt+b.
(1)根據(jù)以上數(shù)據(jù),求出函數(shù)y=Acosωt+b的最小正周期T、振幅A及函數(shù)表達(dá)式;
(2)依據(jù)規(guī)定,當(dāng)海浪高度高于1米時才對沖浪愛好者開放,請依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8:00至晚上20:00之間,有多長時間可供沖浪者進(jìn)行運動?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;
(2)若,求的值.

查看答案和解析>>

同步練習(xí)冊答案