雙曲線4x2-y2=1的漸近線方程是
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:令雙曲線的右邊為0,即可得到雙曲線的漸近線方程.
解答: 解:由4x2-y2=0,可得雙曲線4x2-y2=1的漸近線方程是2x±y=0.
故答案為:2x±y=0.
點(diǎn)評(píng):熟練掌握雙曲線的方程與漸近線的方程的關(guān)系是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AD為圓O的直徑,直線BA與圓O相切于點(diǎn)A,直線OB與弦AC垂直并相交于點(diǎn)G,與弧AC相交于M,連接DC,AB=10,AC=12.
(1)求證:BA•DC=GC•AD;
(2)求OA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若f′(x0)=6,求
lim
t→0
f(x0-t)-f(x0)
3t
的值;
(2)若函數(shù)f(x)=(x2-x-1)e-x,求f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了檢驗(yàn)主修統(tǒng)計(jì)專業(yè)是否與性別有關(guān),某高校“統(tǒng)計(jì)初步”課程的教師隨機(jī)調(diào)查了選該課的一些學(xué)生情況,具體數(shù)據(jù)如下表:
非統(tǒng)計(jì)專業(yè) 統(tǒng)計(jì)專業(yè)
 男生 14 10
 女生 6 20
(1)分別計(jì)算男生、女生主修統(tǒng)計(jì)專業(yè)的百分比,并求K2的值;
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為主修統(tǒng)計(jì)專業(yè)與性別有關(guān)?
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
.(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的不等式
x-a
x+1
<0的解集為P,-x2+3x≥0的解集為Q.
(Ⅰ)若a=3,求集合P;
(Ⅱ)若Q∪P=P,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式|x+1|+|x-1|≥a恒成立,則a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|-3≤x<1},B={x|a-1<x≤a},且A∩B≠∅,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)an是(1-
x
n的展開式中x項(xiàng)的系數(shù)(n=2,3,4,…),若bn=
an+1
(n+7)
a
 
n+2
,則bn的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cos(α-
π
6
)=-
3
5
,0<α<π,則sinα=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案