【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上移動(dòng).
(1)證明:D1E⊥A1D;
(2)若EB,求二面角D1﹣EC﹣D的大小.
【答案】(1)見(jiàn)解析(2)30°.
【解析】
(1)以D為原點(diǎn),DA,DC,DD1所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,
設(shè)AE=t,(0≤t≤2),證明0即得證;(2)利用向量法求二面角D1﹣EC﹣D的大。
證明:(1)以D為原點(diǎn),DA,DC,DD1所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,
設(shè)AE=t,(0≤t≤2),則D1(0,0,1),E(1,t,0),A1(1,0,1),D(0,0,0),
(1,t,﹣1),(﹣1,0,﹣1),
所以0,
∴D1E⊥A1D.
(2)∵EB,∴E(1,2,0),C(0,2,0),
(1,,0),(0,﹣2,1),
設(shè)平面CED1的法向量(x,y,z),
則,取y=3,得(,6),
平面CDE的法向量(0,0,1),
設(shè)二面角D1﹣EC﹣D的平面角為θ,
則cosθ,所以θ=30°,
∴二面角D1﹣EC﹣D的大小為30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為邊長(zhǎng)為2的菱形,,,面面,點(diǎn)為棱的中點(diǎn).
(1)在棱上是否存在一點(diǎn),使得面,并說(shuō)明理由;
(2)當(dāng)二面角的余弦值為時(shí),求直線與平面所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次的一次學(xué)科測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見(jiàn)部分如圖.
(Ⅰ)求參加測(cè)試的總?cè)藬?shù)及分?jǐn)?shù)在[80,90)之間的人數(shù);
(Ⅱ)若要從分?jǐn)?shù)在[80,100)之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,恰有一份分?jǐn)?shù)在[90,100)之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校學(xué)生社團(tuán)心理學(xué)研究小組在對(duì)學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽(tīng)課時(shí)間(單位:分鐘)之間的關(guān)系滿足如圖所示的曲線.當(dāng)時(shí),曲線是二次函數(shù)圖象的一部分,當(dāng)時(shí),曲線是函數(shù)圖象的一部分.根據(jù)專(zhuān)家研究,當(dāng)注意力指數(shù)大于80時(shí)學(xué)習(xí)效果最佳.
(1)試求的函數(shù)關(guān)系式;
(2)教師在什么時(shí)段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)當(dāng)時(shí),解不等式;
(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確說(shuō)法的個(gè)數(shù)是( )
①在用列聯(lián)表分析兩個(gè)分類(lèi)變量與之間的關(guān)系時(shí),隨機(jī)變量的觀測(cè)值越大,說(shuō)明“與有關(guān)系”的可信度越大
②以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是和0. 3
③已知兩個(gè)變量具有線性相關(guān)關(guān)系,其回歸直線方程為,若,,則
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,平面平面,,,,,,.
(1)求證:平面;
(2)求二面角的正弦值;
(3)在棱上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)f(x),若f(x)的圖象上存在關(guān)于原點(diǎn)對(duì)稱的點(diǎn),則稱f(x)為定義域上的“偽奇函數(shù)”.
(1)若f(x)=ln(2x+1)+m是定義在區(qū)間[﹣1,1]上的“偽奇函數(shù)”,求實(shí)數(shù)m的取值范圍;
(2)試討論f(x)=4x﹣m2x+2+4m2﹣3在R上是否為“偽奇函數(shù)”?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的方程為,在橢圓上,橢圓的左頂點(diǎn)為,左、右焦點(diǎn)分別為,的面積是的面積的倍.
(1)求橢圓的方程;
(2)直線()與橢圓交于,,連接,并延長(zhǎng)交橢圓于,,連接,指出與之間的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com