2.不等式$\frac{3x+4}{x-2}$>4的解集是(2,12).

分析 解不等式變形,得到$\frac{x-12}{x-2}$<0,解出即可.

解答 解:∵$\frac{3x+4}{x-2}$>4,
∴$\frac{3x+4-4(x-2)}{x-2}$>0,
即$\frac{x-12}{x-2}$<0,解得:2<x<12,
故答案為:(2,12).

點(diǎn)評(píng) 本題考查了解不等式問題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,三棱柱ABC-A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,
(Ⅰ)求證:AC⊥A1B;
(Ⅱ)求二面角A-A1C-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)i為虛數(shù)單位,復(fù)數(shù)$\overline{i(1+i)}$的虛部為(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知不等式2x+1>m(x2+1).若對(duì)于所有的實(shí)數(shù)x不等式恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知A,B,C三點(diǎn)在球O的球面上,AB=BC=CA=3,且球心O到平面ABC的距離等于球半徑的$\frac{1}{3}$,則球O的表面積為(  )
A.36πB.C.$\frac{27}{4}$πD.$\frac{27}{2}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=|x2-4|-a恰有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為a=0或a>4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)x,y∈R,a>1,b>1,若ax=by=3,a+b=6,則$\frac{1}{x}$+$\frac{1}{y}$的最大值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.曲線C是平面內(nèi)到直線l1:x=-1和直線l2:y=1的距離之積等于常數(shù)k2(k>0)的點(diǎn)的軌跡,下列四個(gè)結(jié)論:
①曲線C過點(diǎn)(-1,1);
②曲線C關(guān)于點(diǎn)(-1,1)成中心對(duì)稱;
③若點(diǎn)P在曲線C上,點(diǎn)A、B分別在直線l1、l2上,則|PA|+|PB|不小于2k;
④設(shè)P0為曲線C上任意一點(diǎn),則點(diǎn)P0關(guān)于直線l1:x=-1,點(diǎn)(-1,1)及直線f(x)對(duì)稱的點(diǎn)分別為P1、P2、P3,則四邊形P0P1P2P3的面積為定值4k2;其中,
所有正確結(jié)論的序號(hào)是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)$f(x)=\frac{{{{(x+3)}^0}}}{{\sqrt{|x|-x}}}$的定義域是(-∞,-3)∪(-3,0).

查看答案和解析>>

同步練習(xí)冊(cè)答案