10.已知不等式2x+1>m(x2+1).若對于所有的實數(shù)x不等式恒成立,求m的取值范圍.

分析 原不等式等價于mx2-2x+(m-1)<0,對所有實數(shù)x恒成立,得$\left\{\begin{array}{l}{m<0}\\{△<0}\end{array}\right.$,求出m的取值范圍即可.

解答 解:不等式2x+1>m(x2+1)等價于mx2-2x+(m-1)<0,
若對所有實數(shù)x恒成立,當(dāng)且僅當(dāng)m<0,
且△=4-4m(m-1)<0,
化簡得$\left\{\begin{array}{l}{m<0}\\{{m}^{2}-m-1>0}\end{array}\right.$,
解得m<$\frac{1-\sqrt{5}}{2}$,
所以m的取值范圍是{m|m<$\frac{1-\sqrt{5}}{2}$}.

點評 本題考查了不等式恒成立的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,A,B,C的對邊分別為a、b、c,$C=\frac{π}{3},b=8$,△ABC的面積為$10\sqrt{3}$.
(Ⅰ)求c的值;
(Ⅱ)求cos(B-C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.過雙曲線$\frac{x^2}{3}-{y^2}=1$右焦點的直線l被圓x2+(y+2)2=9截得弦長最長時,則直線l的方程為(  )
A.x-y+2=0B.x+y-2=0C.x-y-2=0D.x+y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=|lnx|,若在區(qū)間$[\frac{1}{3},3]$內(nèi),曲線g(x)=f(x)-ax與x軸有三個不同的交點,則實數(shù)a的取值范圍是( 。
A.$[\frac{ln3}{3},\frac{1}{e})$B.$[\frac{ln3}{3},\frac{1}{2e})$C.$(0,\frac{1}{e})$D.$(0,\frac{1}{2e})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知A、B、C相互獨立,如果P(AB)=$\frac{1}{6}$,$P({\overline BC})=\frac{1}{8}$,$P({AB\overline C})=\frac{1}{8}$,$P({\overline AB})$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.“4<K<9”是“方程$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{k-4}$=1表示的圖形為橢圓”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.不等式$\frac{3x+4}{x-2}$>4的解集是(2,12).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=log2||x|-1|.
(1)作出函數(shù)f(x)的大致圖象;
(2)指出函數(shù)f(x)的奇偶性、單調(diào)區(qū)間及零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點P在截面A1DB上,則線段AP的最小值等于( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步練習(xí)冊答案