(2012•豐臺區(qū)二模)已知cosθ=2sinθ,則cos2θ的值為
3
5
3
5
分析:利用同角三角函數(shù)間的基本關(guān)系得到sin2θ+cos2θ=1,將已知的cosθ=2sinθ代入,求出sin2θ的值,然后將所求式子利用二倍角的余弦函數(shù)公式化簡后,將sin2θ的值代入即可求出值.
解答:解:∵cosθ=2sinθ,且sin2θ+cos2θ=1,
∴sin2θ+4sin2θ=1,即sin2θ=
1
5

則cos2θ=1-2sin2θ=1-2×
1
5
=
3
5

故答案為:
3
5
點(diǎn)評:此題考查了二倍角的余弦函數(shù)公式,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握公式及基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺區(qū)二模)執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為63,則判斷框中應(yīng)填( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺區(qū)二模)如圖所示,四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,Q是棱PA上的動點(diǎn).
(Ⅰ)若Q是PA的中點(diǎn),求證:PC∥平面BDQ;
(Ⅱ)若PB=PD,求證:BD⊥CQ;
(Ⅲ)在(Ⅱ)的條件下,若PA=PC,PB=3,∠ABC=60°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺區(qū)二模)從5名學(xué)生中任選4名分別參加數(shù)學(xué)、物理、化學(xué)、生物四科競賽,且每科競賽只有1人參加,若甲不參加生物競賽,則不同的選擇方案共有
96
96
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺區(qū)二模)在平面直角坐標(biāo)系中,若點(diǎn)A,B同時滿足:①點(diǎn)A,B都在函數(shù)y=f(x)圖象上;②點(diǎn)A,B關(guān)于原點(diǎn)對稱,則稱點(diǎn)對(A,B)是函數(shù)y=f(x)的一個“姐妹點(diǎn)對”(規(guī)定點(diǎn)對(A,B)與點(diǎn)對(B,A)是同一個“姐妹點(diǎn)對”).那么函數(shù)f(x)=
x-4,x≥0
x2-2x,x<0
的“姐妹點(diǎn)對”的個數(shù)為
1
1
;當(dāng)函數(shù)g(x)=ax-x-a有“姐妹點(diǎn)對”時,a的取值范圍是
a>1
a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺區(qū)二模)某地區(qū)恩格爾系數(shù)y(%)與年份x的統(tǒng)計數(shù)據(jù)如下表:
年份x 2004 2005 2006 2007
恩格爾系數(shù)y(%) 47 45.5 43.5 41
從散點(diǎn)圖可以看出y與x線性相關(guān),且可得回歸方程為
?
y
=
?
b
x+4055.25
,據(jù)此模型可預(yù)測2012年該地區(qū)的恩格爾系數(shù)(%)為
31.25
31.25

查看答案和解析>>

同步練習(xí)冊答案