(本小題滿分12分)已知⊙C:x2+y2-2x-2y+1=0,直線l與⊙C相切且分別交x軸、y軸正向于A、B兩點,O為坐標原點,且=a,=b(a>2,b>2).
(Ⅰ)求線段AB中點的軌跡方程.
(Ⅱ)求△ABC面積的極小值.
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分15分)
設有半徑為3的圓形村落,、兩人同時從村落中心出發(fā)。一直向北直行;先向東直行,出村后一段時間,改變前進方向,沿著與村落邊界相切的直線朝所在的方向前進。
(1)若在距離中心5的地方改變方向,建立適當坐標系,
求:改變方向后前進路徑所在直線的方程
(2)設、兩人速度一定,其速度比為,且后來恰與相遇.問兩人在何處相遇?
(以村落中心為參照,說明方位和距離)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)
已知為平面直角坐標系的原點,過點的直線與圓交于,兩點.
(I)若,求直線的方程;
(Ⅱ)若與的面積相等,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題共9分)如圖,在△ACB中,∠ACB = 90°,AC = 4,BC = 2,點P為線段CA(不包括端點)上的一個動點,以為圓心,1為半徑作.
(1)連結(jié),若,試判斷與直線AB的位置關系,并說明理由;
(2)當線段PC等于多少時,與直線AB相切?
(3)當與直線AB相交時,寫出線段PC的取值范圍。
(第(3)問直接給出結(jié)果,不需要解題過程)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓C:x2+y2=r2(r>0)經(jīng)過點(1,).
(1)求圓C的方程;
(2)是否存在經(jīng)過點(-1,1)的直線l,它與圓C相交于A,B兩個不同點,且滿足=+(O為坐標原點)關系的點M也在圓C上?如果存在,求出直線l的方程;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
設F1,F(xiàn)2分別是橢圓+y2=1的左、右焦點,P是第一象限內(nèi)該橢圓上的一點,且PF1⊥PF2,則點P的橫坐標為( )
A.1 | B. | C.2 | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com