設(shè)函數(shù)f(x)可導(dǎo),則
lim
△x→0
f(15+3△x)-f(15)
△x
等于(  )
A、f′(15)
B、3f′(15)
C、
1
3
f′(15)
D、f′(3)
考點(diǎn):定積分
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)導(dǎo)數(shù)的定義,即可得到結(jié)論
解答: 解:
lim
△x→0
f(15+3△x)-f(15)
△x
=3
lim
△x→0
f(3△x+15)-f(15)
3△x
=3f′(15),
故選:B.
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的概念,利用導(dǎo)數(shù)的定義是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2cosx在x=
π
2
處的導(dǎo)數(shù)值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“x<-1”是“x<0”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“ab<0”是“方程ax2+by2=c(a、b、c∈R)表示雙曲線”的(  )條件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分又不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2(x+1)+
4-x2
的定義域?yàn)椋ā 。?/div>
A、(-1,2]
B、(-1,2)
C、[-1,2)
D、[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=9,點(diǎn)A(2,0),點(diǎn)P是圓O上任意一點(diǎn),線段AP的垂直平分線l與半徑OP相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡是( 。
A、圓B、拋物線C、雙曲線D、橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個(gè)幾何體的三視圖,則這個(gè)幾何體是( 。
A、圓柱B、圓臺(tái)C、圓錐D、棱臺(tái)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(3,4),
b
=(9,x),
c
=(4,y),
a
b
,
a
c

(1)求
a
b
;
(2)若
m
=2
a
-
b
,
n
=
a
+c,求向量
m
、
n
夾角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ),(ω>0,A>0,φ∈(0,
π
2
))的部分圖象如圖所示,其中點(diǎn)P是圖象的一個(gè)最高點(diǎn).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)已知α∈(π,
2
),且f(
α
2
-
12
)=
12
13
,求f(
α
2
).

查看答案和解析>>

同步練習(xí)冊(cè)答案