分析 由已知得PA⊥平面PBC,從而BC⊥平面PAO,進(jìn)而AO⊥BC,同理可證BO⊥AC,CO⊥AB,由此得到O是△ABC的垂心.
解答 解:∵P點(diǎn)在則△ABC所在的平面外,O點(diǎn)是P點(diǎn)在平面ABC內(nèi)的射影,
PA、PB、PC兩兩垂直,
∴PA⊥平面PBC,∴PA⊥BC,
又∵PO⊥底面ABC,∴PO⊥BC,
∴BC⊥平面PAO,∴AO⊥BC,
同理可證BO⊥AC,CO⊥AB,
∴O是△ABC的垂心.
故答案為:垂心.
點(diǎn)評(píng) 本題考查三角形五心的判斷與求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,0)∪(2,+∞) | B. | (-2,0)∪(0,2) | C. | (-∞,-2)∪(2,+∞) | D. | (-∞,-2)∪(0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1)(2) | B. | (2)(4) | C. | (3)(5) | D. | (1)(4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 42 | C. | 30 | D. | 22 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com