【題目】近年來,共享單車在我國各城市迅猛發(fā)展,為人們的出行提供了便利,但也給城市的交通管理帶來了一些困難,為掌握共享單車在省的發(fā)展情況,某調(diào)查機構(gòu)從該省抽取了5個城市,并統(tǒng)計了共享單車的指標(biāo)和指標(biāo),數(shù)據(jù)如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
指標(biāo) | 2 | 4 | 5 | 6 | 8 |
指標(biāo) | 3 | 4 | 4 | 4 | 5 |
(1)試求與間的相關(guān)系數(shù),并說明與是否具有較強的線性相關(guān)關(guān)系(若,則認(rèn)為與具有較強的線性相關(guān)關(guān)系,否則認(rèn)為沒有較強的線性相關(guān)關(guān)系).
(2)建立關(guān)于的回歸方程,并預(yù)測當(dāng)指標(biāo)為7時,指標(biāo)的估計值.
(3)若某城市的共享單車指標(biāo)在區(qū)間的右側(cè),則認(rèn)為該城市共享單車數(shù)量過多,對城市的交通管理有較大的影響交通管理部門將進(jìn)行治理,直至指標(biāo)在區(qū)間內(nèi)現(xiàn)已知省某城市共享單車的指標(biāo)為13,則該城市的交通管理部門是否需要進(jìn)行治理?試說明理由.
參考公式:回歸直線中斜率和截距的最小二乘估計分別為
,,相關(guān)系數(shù)
參考數(shù)據(jù):,,.
【答案】(1),與具有較強的線性相關(guān)關(guān)系;(2),指標(biāo)的估計值為4.6;(3)城市的交通管理部門需要進(jìn)行治理,理由見解析.
【解析】
(1)求出,求出相關(guān)系數(shù)公式中的各個量,即可得出結(jié)論;
(2)利用(1)中的數(shù)據(jù)求出,求出線性回歸方程,即可求出時,的值;
(3)分別求出的值,13與對比,即可得出結(jié)論.
(1)由題得,
所以,,
則.
因為,所以與具有較強的線性相關(guān)關(guān)系.
(2)由(1)得,,
所以線性回歸方程為.
當(dāng)時,,
即當(dāng)指標(biāo)為7時,指標(biāo)的估計值為4.6.
(3)由題得,
因為,所以該城市的交通管理部門需要進(jìn)行治理.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象向右平移個單位,在向上平移一個單位,得到g(x)的圖象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],則x1﹣2x2的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中,圓的方程為,,,為圓上三個定點,某同學(xué)從點開始,用擲骰子的方法移動棋子.規(guī)定:①每擲一次骰子,把一枚棋子從一個定點沿圓弧移動到相鄰下一個定點;②棋子移動的方向由擲骰子決定,若擲出骰子的點數(shù)為偶數(shù),則按圖中箭頭方向移動;若擲出骰子的點數(shù)為奇數(shù),則按圖中箭頭相反的方向移動.設(shè)擲骰子次時,棋子移動到,,處的概率分別為,,.例如:擲骰子一次時,棋子移動到,,處的概率分別為,,.
(1)分別擲骰子二次,三次時,求棋子分別移動到,,處的概率;
(2)擲骰子次時,若以軸非負(fù)半軸為始邊,以射線,,為終邊的角的余弦值記為隨機變量,求的分布列和數(shù)學(xué)期望;
(3)記,,,其中.證明:數(shù)列是等比數(shù)列,并求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著移動支付的普及,中國人的生活方式正在悄然發(fā)生改變,帶智能手機而不帶錢包出門漸漸成為中國人的新習(xí)慣.在調(diào)查“現(xiàn)金支付,銀聯(lián)卡支付,手機支付”三種支付方式中“最常用的支付方式”這個問題時,在中國某地,從20歲到40歲人群中隨機抽取55人,從40歲到60歲人群隨機抽取45人,進(jìn)行答題.20歲到40歲人群的支付情況是選擇現(xiàn)金支付的占、銀聯(lián)卡支付的占、手機支付的占.40歲到60歲人群的支付情況是:現(xiàn)金支付的占、銀聯(lián)卡支付的占、手機支付的占.
(1)請根據(jù)以上調(diào)查結(jié)果將下面列聯(lián)表補充完整;并判斷至多有多少把握認(rèn)為支付方式與年齡有關(guān);
手機支付 | 其他支付方式 | 合計 | |
20歲到40歲 | |||
40歲到60歲 | |||
合計 |
(2)商家為了鼓勵使用手機支付規(guī)定手機支付打9折,其他支付方式不打折.現(xiàn)有一物品售價100元,以樣本中支付方式的頻率估計一件產(chǎn)品支付方式的概率,假設(shè)購買每件物品的支付方式相互獨立.求4件此種物品銷售額的數(shù)學(xué)期望.
附:,其中.
0.40 | 0.25 | 0.15 | 0.10 | 0.050 | 0.025 | 0.01 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.636 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點,焦點在軸上,左頂點為,左焦點為,點在橢圓上,直線與橢圓交于, 兩點,直線, 分別與軸交于點, .
(Ⅰ)求橢圓的方程;
(Ⅱ)以為直徑的圓是否經(jīng)過定點?若經(jīng)過,求出定點的坐標(biāo);若不經(jīng)過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,得到曲線,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,射線與曲線交于點,將射線繞極點逆時針方向旋轉(zhuǎn)交曲線于點.
(1)求曲線的參數(shù)方程;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xy中,曲線C的參數(shù)方程為為參數(shù)),在以為極點,軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為。
(1)求曲線C的極坐標(biāo)方程;
(2)設(shè)直線與曲線C相交于A,B兩點,P為曲C上的一動點,求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南北朝數(shù)學(xué)家何承天發(fā)明的“調(diào)日法”是程序化尋求精確分?jǐn)?shù)來表示數(shù)值的算法,其理論依據(jù)是:設(shè)實數(shù)的不足近似值和過剩近似值分別為和,則是的更為精確的不足近似值或過剩近似值.我們知道,若令,則第一次用“調(diào)日法”后得是的更為精確的過剩近似值,即,若每次都取最簡分?jǐn)?shù),那么第四次用“調(diào)日法”后可得的近似分?jǐn)?shù)為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com