【題目】如圖,直角坐標系中,圓的方程為,,,為圓上三個定點,某同學從點開始,用擲骰子的方法移動棋子.規(guī)定:①每擲一次骰子,把一枚棋子從一個定點沿圓弧移動到相鄰下一個定點;②棋子移動的方向由擲骰子決定,若擲出骰子的點數(shù)為偶數(shù),則按圖中箭頭方向移動;若擲出骰子的點數(shù)為奇數(shù),則按圖中箭頭相反的方向移動.設擲骰子次時,棋子移動到,處的概率分別為,,.例如:擲骰子一次時,棋子移動到,處的概率分別為,,

1)分別擲骰子二次,三次時,求棋子分別移動到,處的概率;

2)擲骰子次時,若以軸非負半軸為始邊,以射線,,為終邊的角的余弦值記為隨機變量,求的分布列和數(shù)學期望;

3)記,,,其中.證明:數(shù)列是等比數(shù)列,并求.

【答案】(1)詳見解析;(2)詳見解析;(3)證明詳見解析,.

【解析】

1)由概率的乘法公式,可得所求值;

2)隨機變量的可能數(shù)值為1,,結(jié)合(1)運用概率的乘法公式,可隨機變量的分布列和期望;

(3)易知,即,由條件推得,利用構(gòu)造法可得,從而求得的值.

1,,

,

綜上,

棋子位置

擲骰子次數(shù)

2

3

2)隨機變量的可能數(shù)值為1,.

綜合(1)得

,

故隨機變量的分布列為

.

3)易知,因此,

而當時,,

,

.

因此

即數(shù)列是以為首項,公比為的等比數(shù)列.

所以,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且曲線在點處的切線方程為.

(1)求實數(shù)a,b的值及函數(shù)的單調(diào)區(qū)間;

(2)若關于x的不等式恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的兩個焦點為、,P為該雙曲線上一點,滿足P到坐標原點O的距離為d,且,則________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

A. , , 依次成公比為2的等比數(shù)列,且

B. , , 依次成公比為2的等比數(shù)列,且

C. , , 依次成公比為的等比數(shù)列,且

D. , 依次成公比為的等比數(shù)列,且

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,,四邊形滿足,點的中點,點邊上的動點,且.

(1)求證:平面平面;

(2)是否存在實數(shù),使得二面角的余弦值為?若存在,試求出實數(shù)的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班上午有五節(jié)課,分別安排語文,數(shù)學,英語,物理,化學各一節(jié)課.要求語文與化學相鄰,數(shù)學與物理不相鄰,且數(shù)學課不排第一節(jié),則不同排課法的種數(shù)是

A. 24B. 16C. 8D. 12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sinxsin(x+3φ)是奇函數(shù),其中 ,則函數(shù)g(x)=cos(2x-φ)的圖象( 。

A.關于點 對稱B.關于軸對稱

C.可由函數(shù)f(x)的圖象向右平移 個單位得到D.可由函數(shù)f(x)的圖象向左平移個單位得到

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角AB,C所對的邊分別為a,b,c,滿足(2bc)cosAacosC

1)求角A;

2)若,b+c5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

1)求時,的單調(diào)區(qū)間;

2)若存在,使得對任意的,都有,求的取值范圍,并證明.

查看答案和解析>>

同步練習冊答案