20.如圖,四邊形ABCD為矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于點F,且點F在CE上.
(1)求證:DE⊥BE;
(2)求四棱錐E-ABCD的體積.

分析 (1)由已知可得AE⊥BC,DA⊥BE,再由線面垂直的性質(zhì)得AE⊥BF,結(jié)合線面垂直的判定得AE⊥平面BEC,進一步得AE⊥BE,再由線面垂直的判定和性質(zhì)可得DE⊥BE;
(2)作EH⊥AB,由面面垂直的性質(zhì)可得EH⊥面AC,解直角三角形求得EH,AE,然后代入棱錐體積公式得答案.

解答 (1)證明:∵DA⊥平面ABE,BC∥DA,
∴AE⊥BC,DA⊥BE,
∵BF⊥平面ACE于點F,∴AE⊥BF,
∵BC∩BF=B,∴AE⊥平面BEC,
則AE⊥BE,
∵AE∩AD=A,∴BE⊥面DAE.
則DE⊥BE;
(2)解:作EH⊥AB,
∵面ABCD⊥面ABE,∴EH⊥面AC,
∵AE⊥BE,AE=EB=BC=2,∴EH=$\sqrt{2}$.
∴${V}_{E-ABCD}=\frac{1}{3}EH•{S}_{四邊形ABCD}=\frac{1}{3}×\sqrt{2}×2×2\sqrt{2}=\frac{8}{3}$.

點評 本題考查直線與平面垂直的性質(zhì),考查柱、錐、臺體的體積,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)x>2,則$y=x+\frac{4}{x-2}$的最小值是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.復(fù)數(shù)z滿足iz=$\frac{2}{1+i}$,則復(fù)數(shù)z為( 。
A.1+iB.-1-iC.-1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列命題中正確命題的個數(shù)是( 。
(1)設(shè)f(x)=ax3+bx2+cx+d(a≠0),若f(x)存在極值,則一定既有極大值又有極小值;
(2)命題“若m=3,則橢圓$\frac{x^2}{4}+\frac{y^2}{m}$=1離心率為$\frac{1}{2}$”的逆命題;
(3)設(shè)z∈C,命題“若z為實數(shù),則z=$\overline{z}$”的否命題;
(4)設(shè)a,b∈R,命題“若ab=0,則復(fù)數(shù)z=a+bi為純虛數(shù)”的逆否命題.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.以平面直角坐標系的原點為極點,x軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的極坐標方程為$ρsin(θ+\frac{π}{3})=m$,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=2+2cost\\ y=2sint\end{array}$(t為參數(shù)).
(1)求直線l的直角坐標方程和圓C的普通方程;
(2)若直線l與圓C有公共點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)z=3x+4y,式中變量x,y滿足下列條件:$\left\{\begin{array}{l}{x+2y≤12}\\{2x+y≤16}\\{-x+2y≤0}\\{x≥0,y≥0}\end{array}\right.$,求z的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.給出下列四個命題:
①f(x)=sin(2x-$\frac{π}{4}$)的對稱軸為x=$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z;
②若函數(shù)y=2cos(ax-$\frac{π}{3}$)的最小正周期是π,則a=2;
③函數(shù)f(x)=sinxcosx-1的最小值為-$\frac{3}{2}$;
④函數(shù)y=sin(x+$\frac{π}{4}$)在[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函數(shù).
其中正確命題的個數(shù)是(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.命題p:?x>0,x-lnx>0,則¬p是( 。
A.?x≤0,x-lnx≤0B.?x>0,x-lnx≤0C.?x≤0,x-lnx≤0D.?x>0,x-ln≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.i是虛數(shù)單位,i+i2+i3+…+i2017=( 。
A.1B.iC.i2D.-i

查看答案和解析>>

同步練習(xí)冊答案