【題目】在直三棱柱ABC-A1B1C1中,AB=1,AC=2,BC=,D,E分別是AC1,BB1的中點(diǎn),則直線DE與平面BB1C1C所成角的正弦值為________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) .
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時(shí),若 ,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為(其中為常數(shù)).
(1)若直線與曲線恰好有一個(gè)公共點(diǎn),求實(shí)數(shù)的值;
(2)若,求直線被曲線截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 (a>b>0)的離心率為.
(Ⅰ)若原點(diǎn)到直線x+y-b=0的距離為,求橢圓的方程;
(Ⅱ)設(shè)過橢圓的右焦點(diǎn)且傾斜角為45°的直線l和橢圓交于A,B兩點(diǎn),對(duì)于橢圓上任意一點(diǎn)M,總存在實(shí)數(shù)λ、μ,使等式成立,求λ2+μ2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=a-2ln x(a∈R).
(Ⅰ)當(dāng)a=2時(shí),求曲線f(x)在x=2處的切線方程;
(Ⅱ)若a>,且m,n分別為f(x)的極大值和極小值,S=m-n,求證:S<.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若有兩個(gè)零點(diǎn),求的取值范圍;
(2)在(1)的條件下,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程是ρ=2,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)).
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)設(shè)曲線C經(jīng)過伸縮變換得到曲線,設(shè)M(x,y)為上任意一點(diǎn),求的最小值,并求相應(yīng)的點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856263)
已知拋物線y2=2px(p>0)的準(zhǔn)線與x軸交于點(diǎn)N,過點(diǎn)N作圓M:(x-2)2+y2=1的兩條切線,切點(diǎn)為P、Q,且|PQ|=.
(Ⅰ)求拋物線的方程;
(Ⅱ)過拋物線的焦點(diǎn)F作斜率為k1的直線與拋物線交于A、B兩點(diǎn),A、B兩點(diǎn)的橫坐標(biāo)均不為2,連接AM,BM并延長分別交拋物線于C、D兩點(diǎn),設(shè)直線CD的斜率為k2,問是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|2x+1|﹣|2x﹣3|,g(x)=|x+1|+|x﹣a|.
(l)求f(x)≥1的解集;
(2)若對(duì)任意的t∈R,s∈R,都有g(s)≥f(t).求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com