如圖,ABCD是邊長為2的正方形,ED⊥平面ABCD, ED="1," EF//BD且2EF=BD.

(1)求證:平面EAC⊥平面BDEF;
(2)求幾何體ABCDEF的體積.

(1)要證明平面EAC⊥平面BDEF垂直,關(guān)鍵是證明AC⊥平面BDEF
(2)2

解析試題分析:(1)∵ ED⊥平面ABCD,AC平面ABCD,
∴ ED⊥AC.
∵ ABCD是正方形,
∴ BD⊥AC,
∴ AC⊥平面BDEF.
又AC?平面EAC,故平面EAC⊥平面BDEF.
(2)連結(jié)FO,∵ EFDO,
∴ 四邊形EFOD是平行四邊形.
由ED⊥平面ABCD可得ED⊥DO,
∴ 四邊形EFOD是矩形.
∵ 平面EAC⊥平面BDEF.
∴ 點(diǎn)F到平面ACE的距離等于就是Rt△EFO斜邊EO上的高,
且高h(yuǎn)=
∴幾何體ABCDEF的體積
=
=2.
考點(diǎn):面面垂直,棱錐的體積
點(diǎn)評:主要是考查了體積公式以及面面垂直的證明,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在各棱長均為的三棱柱中,側(cè)面底面,

(1)求側(cè)棱與平面所成角的正弦值的大。
(2)已知點(diǎn)滿足,在直線上是否存在點(diǎn),使?若存在,請確定點(diǎn)的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在長方體ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,證明直線BC1平行于平面DA1C,并求直線BC1到平面D1AC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在長方體,中,,點(diǎn)在棱AB上移動.

(1 )證明:;
(2)當(dāng)的中點(diǎn)時(shí),求點(diǎn)到面的距離;  
(3)等于何值時(shí),二面角的大小為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,菱形的邊長為6,,.將菱形沿對角線折起,得到三棱錐 ,點(diǎn)是棱的中點(diǎn),.

(1)求證:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,四邊形ABCD是矩形,,F(xiàn)為CE上的點(diǎn),且BF平面ACE,AC與BD交于點(diǎn)G

(1)求證:AE平面BCE
(2)求證:AE//平面BFD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,  AB//CD,∠DAB=90°,PA=AD=DC=1,AB=2,M為PB的中點(diǎn).

(I)證明:MC//平面PAD;
(II)求直線MC與平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在正方體ABCD—A1B1C1D1中,E、F分別為棱BB1和DD1的中點(diǎn).

(1)求證:平面B1FC//平面ADE;
(2)試在棱DC上取一點(diǎn)M,使平面ADE;
(3)設(shè)正方體的棱長為1,求四面體A­1—FEA的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在斜三棱柱ABC—A1B1C1中,AB⊥側(cè)面BB1C1C,BC=2,BB1=4,AB=,∠BCC1=60°.

(Ⅰ)求證:C1B⊥平面A1B1C1;
(Ⅱ)求A1B與平面ABC所成角的正切值;
(Ⅲ)若E為CC1中點(diǎn),求二面角A—EB1—A1的正切值.

查看答案和解析>>

同步練習(xí)冊答案