【題目】設(shè)為實數(shù),函數(shù).
(1)若函數(shù)是偶函數(shù),求實數(shù)的值;
(2)若,求函數(shù)的最小值;
(3)對于函數(shù),在定義域內(nèi)給定區(qū)間,如果存在,滿足,則稱函數(shù)是區(qū)間上的“平均值函數(shù)”,是它的一個“均值點”.如函數(shù)是上的平均值函數(shù),就是它的均值點.現(xiàn)有函數(shù)是區(qū)間上的平均值函數(shù),求實數(shù)的取值范圍.
【答案】(1);(2);(3)
【解析】
試題(1)考察偶函數(shù)的定義,利用通過整理即可得到;(2)此函數(shù)是一個含有絕對值的函數(shù),解決此類問題的基本方法是寫成分段函數(shù)的形式,,要求函數(shù)的最小值,要分別在每一段上求出最小值,取這兩段中的最小值;(3)此問題是一個新概念問題,這種類型都可轉(zhuǎn)化為我們學(xué)過的問題,此題定義了一個均值點的概念,我們通過概念可把題目轉(zhuǎn)化為“存在,使得”從而轉(zhuǎn)化為一元二次方程有解問題.
試題解析:解:(1)是偶函數(shù),在上恒成立,
即,所以得
(2)當(dāng)時,
所以在上的最小值為,
在上的的最小值為f()=,
因為<5,所以函數(shù)的最小值為.
(3)因為函數(shù)是區(qū)間上的平均值函數(shù),
所以存在,使
而,存在,使得
即關(guān)于的方程在內(nèi)有解;
由得
解得所以即
故的取值范圍是
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分,眾數(shù),中位數(shù);
(3)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)()與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)()之比如下表所示,求數(shù)學(xué)成績在[50,90)之外的人數(shù).
分?jǐn)?shù)段 | [50,60) | [60,70) | [70,80) | [80,90) |
1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用水清洗一份蔬菜上殘留的農(nóng)藥,對用一定量的水清洗一次的效果作如下假定:用1個單位量的水可洗掉蔬菜上殘留農(nóng)藥量的,用水越多洗掉的農(nóng)藥量也越多,但總還有農(nóng)藥殘留在蔬菜上.設(shè)用單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與本次清洗前殘留的農(nóng)藥量之比為函數(shù).
(1)求的值,并解釋其實際意義;
(2)現(xiàn)有單位量的水,可以清洗一次,也可以把水平均分成2份后清洗兩次,試問用哪種方案清洗后蔬菜上殘留的農(nóng)藥量比較少?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是函數(shù)的零點,.
(1)求實數(shù)的值;
(2)若不等式在上恒成立,求實數(shù)的取值范圍;
(3)若方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(版)》提出了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對二人進(jìn)行了測驗,根據(jù)測驗結(jié)果繪制了雷達(dá)圖(如圖,每項指標(biāo)值滿分為分,分值高者為優(yōu),低者為差),則下面敘述不正確的是( )
A.甲的數(shù)據(jù)分析素養(yǎng)低于乙
B.乙的六大素養(yǎng)中邏輯推理最差
C.甲的數(shù)學(xué)建模素養(yǎng)差于邏輯推理素養(yǎng)
D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(3ωx),其中ω>0.
(1)若f(x+θ)是最小周期為2π的偶函數(shù),求ω和θ的值;
(2)若f(x)在(0,]上是增函數(shù),求ω的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年月以來,湖北省武漢市持續(xù)開展流感及相關(guān)疾病監(jiān)測,發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID-19),簡稱“新冠肺炎”,下圖是年月日至月日累計確診人數(shù)隨時間變化的散點圖.
為了預(yù)測在未采取強力措施下,后期的累計確診人數(shù),建立了累計確診人數(shù)與時間變量的兩個回歸模型,根據(jù)月日至月日的數(shù)據(jù)(時間變量的值依次,,…,)建立模型和.
參考數(shù)據(jù):其中,.
(1)根據(jù)散點圖判斷,和哪一個適宜作為累計確診人數(shù)與時間變量的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及附表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)以下是月日至月日累計確診人數(shù)的真實數(shù)據(jù),根據(jù)(2)的結(jié)果回答下列問題:
時間 | 月日 | 月日 | 月日 | 月日 | 月日 |
累計確診人數(shù)的真實數(shù)據(jù) |
(i)當(dāng)月日至月日這天的誤差(模型預(yù)測數(shù)據(jù)與真實數(shù)據(jù)差值的絕對值與真實數(shù)據(jù)的比值)都小于則認(rèn)為模型可靠,請判斷(2)的回歸方程是否可靠?
(ii)年月日在人民政府的強力領(lǐng)導(dǎo)下,全國人民共同取了強力的預(yù)防“新冠肺炎”的措施,若采取措施天后,真實數(shù)據(jù)明顯低于預(yù)測數(shù)據(jù),則認(rèn)為防護(hù)措施有效,請判斷預(yù)防措施是否有效?并說明理由.
附:對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,討論函數(shù)與的圖象的交點個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com