18.已知兩個等差數(shù)列2,6,10,…,210及2,8,14,…,212,由這兩個數(shù)列的公共項按從小到大的順序組成一個新的數(shù)列,求這個新數(shù)列的各項之和.

分析 利用等差數(shù)列的通項公式與求和公式即可得出.

解答 解:有兩個等差數(shù)列2,6,10,…,210,及2,8,14,…212,
由這兩個等差數(shù)列的公共項按從小到大的順序組成一個新數(shù)列,2,14,26,38,50,…,182,194,206,是兩個數(shù)列的相同項,為等差數(shù)列.
共有$\frac{206-2}{12}$+1=18項,
它們的和為$\frac{18×(2+206)}{2}$=1872.

點評 本題考查了等差數(shù)列的定義通項公式及其求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知圓C的方程為x2+y2-4x-2y=0,若傾斜角為$\frac{π}{4}$的直線l被圓C所截得的弦長為2$\sqrt{3}$,則直線l的方程為( 。
A.y=x+1B.y=x-3C.y=x+1或y=x-3D.y=x+1或y=x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知Sn為等比數(shù)列{an}的前n項和,a1=2,且a4-1,a5,3a4+1成等差數(shù)列.
(1)求數(shù)列{an}的通項公式及Sn
(2)若bn=log2(an•an+1),${c_n}=\frac{1}{{{b_n}•{b_{n+1}}}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.下列命題:①a>b⇒c-a<c-b;②a>b,$c>0⇒\frac{c}{a}<\frac{c}$;③a>b⇒ac2>bc2;④a3>b3⇒a>b,其中正確的命題個數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知等比數(shù)列{an}的前n項為和Sn,且a3-3a2=0,S2=12,數(shù)列{bn}中,b1=1,bn+1-bn=2.
(1)求數(shù)列{an},{bn}的通項an和bn;
(2)設(shè)cn=an•bn,求數(shù)列{cn}的前N項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若函數(shù)y=(a2-3a+3)•logax是對數(shù)函數(shù),又函數(shù)$f(x)={log_2}({b^x}-{a^x})$中f(1)=1,
(1)求a,b的值;
(2)當(dāng)x∈[1,3]時,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在同一坐標(biāo)系中,y=2x與y=log2x的圖象與一次函數(shù)y=-x+6的圖象交于兩點,則這兩個交點的橫坐標(biāo)之和為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列函數(shù)在R上是減函數(shù)的為( 。
A.y=0.5xB.y=x3C.y=log0.5xD.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知λ=${∫}_{0}^{3}$x2dx,數(shù)列{an}是各項均為正數(shù)的等比數(shù)列,則$\frac{{a}_{4}+λ{a}_{2}}{{a}_{3}}$的最小值為( 。
A.2$\sqrt{3}$B.2C.6$\sqrt{3}$D.6

查看答案和解析>>

同步練習(xí)冊答案