16.設(shè)Sn為數(shù)列{an}的前n項和,若Sn=5an-1,則an=$\frac{1}{4}×(\frac{5}{4})^{n-1}$.

分析 由已知的數(shù)列遞推式求出首項,再由數(shù)列遞推式得到數(shù)列{an}是以$\frac{1}{4}$為首項,以$\frac{5}{4}$為公比的等比數(shù)列.則an可求.

解答 解:由Sn=5an-1,取n=1,得a1=5a1-1,∴${a}_{1}=\frac{1}{4}$;
當(dāng)n≥2時,an=Sn-Sn-1=5an-1-5an-1+1,
∴4an=5an-1,即$\frac{{a}_{n}}{{a}_{n-1}}=\frac{5}{4}$(n≥2).
則數(shù)列{an}是以$\frac{1}{4}$為首項,以$\frac{5}{4}$為公比的等比數(shù)列.
∴${a}_{n}=\frac{1}{4}×(\frac{5}{4})^{n-1}$.
故答案為:$\frac{1}{4}×(\frac{5}{4})^{n-1}$.

點評 本題考查了遞推關(guān)系的應(yīng)用、等比數(shù)列的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=mx-cosx,g(x)=(ax-1)cosx-sinx(a>0).
(1)若函數(shù)y=f(x)在(-∞,+∞)上是單調(diào)遞增函數(shù),求實數(shù)m的最小值;
(2)若m=1,且對于任意x∈[0,$\frac{π}{2}$],都有不等式f(x)≥g(x)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖所示,三視圖表示的幾何體是( 。
A.圓臺B.棱臺C.棱柱D.圓錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖是函數(shù)f(x)=Acos($\frac{2}{3}$πx+φ)-1(A>0,|φ|<$\frac{π}{2}$)的圖象的一部分,則f(2015)=(  )
A.1B.2C.$\frac{{\sqrt{3}}}{2}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xoy中,已知向量$\overrightarrow{a}$=($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$),$\overrightarrow$=(cosx,sinx),$x∈({-\frac{π}{2},\frac{π}{2}})$.
(I)若$\overrightarrow{a}$⊥$\overrightarrow$,求tanx的值;
(II)若$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{6}$,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)集合A{x|x∈N},且1≤x≤26,B={a,b,c,…,z},對應(yīng)關(guān)系f:A→B如表(即1到26按由小到大順序排列的自然數(shù)與按照字母表順序排列的26個英文小寫字母之間的一一對應(yīng)):
x123452526
f(x)abcdeyz
又知函數(shù)g(x)=$\left\{\begin{array}{l}{lo{g}_{2}(32-x)(22<x<32)}\\{x+4(0≤x≤22)}\end{array}\right.$,若f[g(x1)],f[g(20)],f[g(x2)],f[g(9)]所表示的字母依次排列恰好組成的英文單詞為“exam”,則x1+x2=31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合M={-2,-1,0,1},N={x|$\frac{1}{2}$≤2x≤4},x∈Z},則M∩N=( 。
A.M={-2,-1,0,1,2}B.M={-1,0,1,2}C.M={-1,0,1}D.M={0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,向量$\overrightarrow m=(cos(A-B),sin(A-B))$,$\overrightarrow n=(cosB,-sinB)$,且$\overrightarrow m•\overrightarrow n=-\frac{3}{5}$.
(Ⅰ)求sinA的值;
(Ⅱ)若$a=4\sqrt{2},b=5$,求$\overrightarrow{AB}•\overrightarrow{BC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知$\overrightarrow{AB}$、$\overrightarrow{AC}$是非零向量且滿足($\overrightarrow{AB}-$2$\overrightarrow{AC}$)⊥$\overrightarrow{AB}$,($\overrightarrow{AC}$-2$\overrightarrow{AB}$)$⊥\overrightarrow{AC}$,則∠A等于(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

同步練習(xí)冊答案