【題目】選修4一4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線 是圓心的極坐標(biāo)為()且經(jīng)過極點的圓

(1)求曲線C1的極坐標(biāo)方程和C2的普通方程;

(2)已知射線分別與曲線C1,C2交于點A,B(點B異于坐標(biāo)原點O),求線段AB的長

【答案】(1) ;.(2) .

【解析】

(1)直接利用公式,把參數(shù)方程和極坐標(biāo)方程與直角坐標(biāo)方程進行轉(zhuǎn)化.

(2)聯(lián)立極坐標(biāo)方程,由極徑的意義求出結(jié)果.

(1)由曲線的參數(shù)方程為為參數(shù)),消去參數(shù),

代入的極坐標(biāo)方程為

由曲線是圓心的極坐標(biāo)為且經(jīng)過極點的圓.

可得其極坐標(biāo)方程為,

從而得的普通方程為.

(2)將代入

又將代入,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐如圖一)的平面展開圖(如圖二)中,四邊形為邊長等于的正方形均為正三角形,在三棱錐中:

(I)證明:平面平面;

Ⅱ)若點在棱上運動,當(dāng)直線與平面所成的角最大時,求二面角的余弦值.

圖一

圖二

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中.

1)求函數(shù)的單調(diào)區(qū)間;

2)若對任意,任意,不等式恒成立時最大的記為,當(dāng)時,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的極坐標(biāo)方程和的直角坐標(biāo)方程;

2)直線與曲線,分別交于第一象限內(nèi),兩點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線,過拋物線焦點且與軸垂直的直線與拋物線相交于兩點,且的周長為.

(1)求拋物線的方程;

(2)若直線過焦點且與拋物線相交于、兩點,過點分別作拋物線的切線、,切線相交于點,求:的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對學(xué)生進行視力調(diào)查,若從抽取的6所學(xué)校中隨機抽取2所學(xué)校做進一步數(shù)據(jù)分析.

1)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;

2)求抽取的6所學(xué)校中的2所學(xué)校均為小學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng) 時,求函數(shù)圖象在點處的切線方程;

(2)當(dāng)時,討論函數(shù)的單調(diào)性;

(3)是否存在實數(shù),對任意恒成立?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),為曲線上一動點,動點滿足.

1)求點軌跡的直角坐標(biāo)方程;

2)以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,上一個動點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為,曲線C2的直角坐標(biāo)方程為.

1)若直線l與曲線C1交于M、N兩點,求線段MN的長度;

2)若直線lx軸,y軸分別交于AB兩點,點P在曲線C2上,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案