若f(cosx)=cos3x,則f(sin
π
3
)的值為( 。
A、-1
B、
3
2
C、0
D、1
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令cosx=sin
π
3
求出x的其中一個(gè)值,再代入函數(shù)解析式求解即可.
解答: 解:令cosx=sin
π
3
,則x的值可以取
π
6
,
所以f(sin
π
3
)=f(cos
π
6
)=cos
π
2
=0,
故選:C.
點(diǎn)評(píng):本題考查復(fù)合函數(shù)的函數(shù)值,注意自變量的值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2
3
sin(
π
4
x)在同一半周期內(nèi)的圖象過(guò)點(diǎn)O,P,Q,其中O為坐標(biāo)原點(diǎn),P為函數(shù)圖象的最高點(diǎn),Q為函數(shù)f(x)的圖象與x軸的正半軸的交點(diǎn).
(1)試判斷△OPQ的形狀,并說(shuō)明理由.
(2)若將△OPQ繞原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)角a(0<a<
π
2
)時(shí),頂點(diǎn)P,Q,恰好同時(shí)落在曲線y=
k
x
(x>0)上(如圖所示),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩名同學(xué)在5次體能測(cè)試中的成績(jī)的莖葉圖如圖所示,設(shè)
.
x1
,
.
x2
分別表示甲、乙兩名同學(xué)測(cè)試成績(jī)的平均數(shù),s1,s2分別表示甲、乙兩名同學(xué)測(cè)試成績(jī)的標(biāo)準(zhǔn)差,則有( 。
A、
.
x1
=
.
x2
,s1<s2
B、
.
x1
=
.
x2
,s1>s2
C、
.
x1
.
x2
,s1>s2
D、
.
x1
=
.
x2
,s1=s2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A、B、C是三角形的三個(gè)內(nèi)角,下列關(guān)系恒成立的是( 。
A、sin(A+B)=sinC
B、cos(A+B)=cosC
C、tan(A+B)=tanC
D、sin
A+B
2
=sin
C
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于給定的任意實(shí)數(shù)x,y,z(z≠0且z≠6),記xOy平面上點(diǎn)P(x,y)到三點(diǎn)A(z,z)、B(6-z,z-6)、C(0,0)的三個(gè)距離中的最大值為g(x,y,z),則g(x,y,z)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在區(qū)間(0,+∞)上的函數(shù)f(x)若滿足:(1)f(x)不恒為零;(2)對(duì)任意實(shí)數(shù)x,p,都有f(xp)=pf(x),我們就稱f(x)為“降冪函數(shù)”
(1)判斷y=log2x是否為“降冪函數(shù)”,并說(shuō)明理由;
(2)若函數(shù)f(x)為“降冪函數(shù)”,證明:f(m•n)=f(n)+f(m);
(3)若函數(shù)f(x)為“降冪函數(shù)”,且在(0,+∞)上單調(diào)遞增,f(2)=1,f(x)滿足f(m
1+sin2θ
+2sinθ•sin(θ+
π
3
)+cos2θ)-f(m)>1對(duì)一切θ∈[0,
π
2
]上恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)在x>0時(shí),f(x)=
1
3
x3-lnx,則f(x)在[-2,-
1
2
]上的值域?yàn)椋ā 。?/div>
A、[-ln2-
1
24
,-
1
3
]
B、[ln2-
8
3
,-ln2-
1
24
]
C、[ln2-
8
3
,-
1
3
]
D、[-
1
3
,ln2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合 A={2,-2},B={x|x2-ax+4=0},若A∪B=A,則實(shí)數(shù)a滿足(  )
A、{a|-4<a<4}
B、{a|-2<a<2}
C、{-4,4}
D、{a|-4≤a≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓T:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過(guò)點(diǎn)P(2,
2
),一個(gè)焦點(diǎn)F的坐標(biāo)是(2,0).
(1)求橢圓T的方程;
(2)設(shè)直線l:y=kx+m與橢圓T交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),橢圓T的離心率為e,若kOA•kOB=e2-1,求證:△AOB的面積為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案