(本題滿(mǎn)分12分)三棱錐中,,,

(Ⅰ)求證:平面平面;
(Ⅱ)當(dāng)時(shí),求三棱錐的體積.

(1)先證明平面 ,然后利用面面垂直的判定定理得到證明。
(2)

解析試題分析:證明:(Ⅰ)作平面于點(diǎn),∵,
,即的外心
又∵中,
邊的中點(diǎn)
所以平面
即證:平面平面.             。6分
(Ⅱ)∵,,∴為正三角形
 ,  ∴

∴三棱錐的體積
.………….12分
考點(diǎn):本試題主要是考查了面面垂直以及棱錐的體積的求解。
點(diǎn)評(píng):解決該試題的關(guān)鍵是能利用面面垂直的判定定理和等體積法來(lái)分別求解得到。同時(shí)也可以建立空間直角坐標(biāo)系來(lái)證明垂直問(wèn)題,通過(guò)法向量垂直來(lái)說(shuō)明面面垂直,同時(shí)利用向量可以求點(diǎn)到面的距離,進(jìn)而得到體積的運(yùn)算。屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)已知直三棱柱中,△為等腰直角三角形,∠ =,且、、分別為、的中點(diǎn).

(1)求證:∥平面;
(2)求證:⊥平面;
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分10分)
如圖,已知三棱錐OABC的側(cè)棱OA,OBOC兩兩垂直,且OA=2,OB=3,OC=4,EOC的中點(diǎn).

(1)求異面直線BEAC所成角的余弦值;
(2)求二面角ABEC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題10分)三棱柱中,側(cè)棱底面,,

(1)求異面直線所成角的余弦值;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分14分)
如圖,斜三棱柱中,側(cè)面底面ABC,側(cè)面是菱形,E、F分別是AB的中點(diǎn).

求證:(1)EF∥平面;
(2)平面CEF⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

圖1,平面四邊形關(guān)于直線對(duì)稱(chēng),,.把沿折起(如圖2),使二面角的余弦值等于

對(duì)于圖二,完成以下各小題:
(Ⅰ)求兩點(diǎn)間的距離;
(Ⅱ)證明:平面
(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱錐中,底面,點(diǎn),分別在棱上,且 

(Ⅰ)求證:平面
(Ⅱ)當(dāng)的中點(diǎn)時(shí),求與平面所成的角的正弦值;
(Ⅲ)是否存在點(diǎn)使得二面角為直二面角?若存在,請(qǐng)確定點(diǎn)E的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
如圖,直三棱柱ABCA1B1C1中,ACBC=1,∠ACB=90°,AA1,DA1B1中點(diǎn).

(1)求證:C1DAB1 ;
(2)當(dāng)點(diǎn)FBB1上什么位置時(shí),會(huì)使得AB1⊥平面C1DF?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分14分)
如圖,四棱錐S-ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3.

(1)求證:平面SBC⊥平面SAB;
(2)若E、F分別為線段BC、SB上的一點(diǎn)(端點(diǎn)除外),滿(mǎn)足.(
①求證:對(duì)于任意的,恒有SC∥平面AEF;
②是否存在,使得△AEF為直角三角形,若存在,求出所有符合條件的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案